首页> 外文期刊>Environmental Modelling & Software >Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation
【24h】

Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation

机译:使用DREAM软件包的马尔可夫链蒙特卡罗仿真:理论,概念和MATLAB实现

获取原文
获取原文并翻译 | 示例

摘要

Bayesian inference has found widespread application and use in science and engineering to reconcile Earth system models with data, including prediction in space (interpolation), prediction in time (forecasting), assimilation of observations and deterministic/stochastic model out ut, and inference of the model parameters. Bayes theorem states that the posterior probability, p(H vertical bar(Y) over tilde) of a hypothesis, H is proportional to the product of the prior probability, p(H) of this hypothesis an the likelihood, L(H vertical bar(Y) over tilde) of the same hypothesis given the new observations, (Y) over tilde, or p(H vertical bar(Y) over tilde)proportional to p(H)L(H vertical bar(Y) over tilde). In science and engineering, H often constitutes some numerical model F(x) which summarizes, in algebraic and differential equations, state variables and fluxes, all knowledge of the system of interest, and the unknown parameter values, x are subject to inference using the data vertical bar(Y)over tilde>. Unfortunately, for complex system models the posterior distribution is often high dimensional and analytically intractable, and sampling methods are required to approximate the target. In this paper I review the basic theory of Markov chain Monte Carlo (MCMC) simulation and introduce a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm developed by Vrugt at al. (2008a, 2009a) and used for Bayesian inference in fields ranging from physics, chemistry and engineering, to ecology, hydrology, and geophysics. This MATLAB toolbox provides scientists and engineers with an arsenal of options and utilities to solve posterior sampling problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded parameter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic model evaluation, data assimilation, Bayesian model averaging, distributed computation, and informativeon-informative prior distributions. The DREAM toolbox supports parallel computing and includes tools for convergence analysis of the sampled chain trajectories and post-processing of the results. Seven different case studies illustrate the main capabilities and functionalities of the MATLAB toolbox. (C) 2015 Elsevier Ltd. All rights reserved.
机译:贝叶斯推理已在科学和工程中广泛应用并用于将地球系统模型与数据进行调和,包括空间预测(插值),时间预测(预测),观测值的同化和确定性/随机模型输出以及模型参数。贝叶斯定理指出,假设的后验概率p(H竖线(Y)超过波浪号)与该假设的先验概率p(H)的乘积成正比,即似然性L(H竖线)给出新的观测值时,相同假设的(Y)超过波浪号(Y)超过波浪号,或(p(H垂直条(Y)超过波浪号))与p(H)L(H垂直条(Y)超过波浪号)成比例。在科学和工程学中,H经常构成一些数值模型F(x),它以代数和微分方程式概括了状态变量和通量,所关注系统的所有知识以及未知参数值,x可以通过使用波浪号>上的数据竖线(Y)。不幸的是,对于复杂的系统模型,后验分布通常是高维的并且在分析上难以处理,并且需要采样方法来近似目标。在本文中,我回顾了马尔可夫链蒙特卡罗(MCMC)仿真的基本理论,并介绍了由Vrugt等人开发的差分进化自适应都会(DREAM)算法的MATLAB工具箱。 (2008a,2009a),并用于从物理,化学和工程到生态,水文和地球物理学等领域的贝叶斯推理。这个MATLAB工具箱为科学家和工程师提供了大量选项和实用程序,以解决后验问题,其中包括(尤其是)双峰,高维,摘要统计,有界参数空间,动态仿真模型,形式/非正式似然函数(GLUE),诊断模型评估,数据同化,贝叶斯模型平均,分布式计算以及信息性/非信息性先验分布。 DREAM工具箱支持并行计算,并包括用于对采样链轨迹进行收敛分析和对结果进行后处理的工具。七个不同的案例研究说明了MATLAB工具箱的主要功能。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号