首页> 外文期刊>Environmental Engineering Science >Selecting Parameter-Optimized Surrogate Models in DNAPL-Contaminated Aquifer Remediation Strategies
【24h】

Selecting Parameter-Optimized Surrogate Models in DNAPL-Contaminated Aquifer Remediation Strategies

机译:选择参数优化的替代模型在DNAPL污染的含水层修复策略中

获取原文
获取原文并翻译 | 示例

摘要

Surfactant-enhanced aquifer remediation (SEAR) is an efficient way for clearing dense nonaqueous phase liquids (DNAPLs) which may result in serious environment and health threats. To limit the high cost of SEAR, simulation optimization techniques are generally applied to ensure that an optimal remediation strategy is achieved. Furthermore, surrogate model techniques have been widely used to reduce the high computational burden associated with these processes. However, previous research rarely involved comparison of different surrogate models for multiphase flow numerical simulation models. In this regard, we conducted a comparative analysis to select the optimal modeling technique and parameter optimization algorithm for surrogate models in DNAPL-contaminated aquifer remediation strategy optimization problems. Latin hypercube sampling method was used to collect data in the feasible region of input variables. Surrogate models were developed using radial basis function artificial neural network, Kriging, and support vector regression. Genetic algorithm, self-adaptive particle swarm optimization (PSO), and self-adaptive PSO based on simulated annealing (SA) were applied to optimize the parameters of the surrogate model. Results showed that the optimal surrogate model was Kriging model with the parameters obtained by self-adaptive PSO based on SA. Relative errors of the contaminant removal rates between the optimal surrogate model and simulation model for 100 validation samples were lower than 3.5%, clearly confirming the optimal performance of the proposed model. Finally, computation of run time enabled us to conclude that the surrogate model presented in this article was capable of considerably reducing computational burden of simulation optimization processes.
机译:表面活性剂增强的含水层修复(Sear)是用于清除致密的非水相液体(DNAPLS)的有效方法,这可能导致严重的环境和健康威胁。为了限制安全性的高成本,通常应用仿真优化技术以确保实现了最佳修复策略。此外,替代模型技术已被广泛用于减少与这些过程相关的高计算负担。然而,以前的研究很少涉及多相流量数值模拟模型的不同替代模型的比较。在这方面,我们进行了比较分析,以选择DNAPL污染含水层修复策略优化问题中替代模型的最佳建模技术和参数优化算法。 LATIN HyperCube采样方法用于收集输入变量的可行区域中的数据。代理模型采用径向基函数人工神经网络,Kriging和支持向量回归开发。基于模拟退火(SA)的遗传算法,自适应粒子群优化(PSO)和自适应PSO用于优化替代模型的参数。结果表明,最佳替代模型是Kriging模型,基于SA通过自适应PSO获得的参数。 100次验证样本的最佳替代模型和仿真模型之间的污染物去除率的相对误差低于3.5%,清楚地证实了所提出的模型的最佳性能。最后,使运行时间的计算使我们能够得出结论,本文中提供的代理模型能够大大降低模拟优化过程的计算负担。

著录项

  • 来源
    《Environmental Engineering Science》 |2015年第12期|1016-1026|共11页
  • 作者单位

    Jilin Univ Minist Educ Key Lab Groundwater Resources & Environm Changchun 130021 Peoples R China|Jilin Univ Coll Environm & Resources Changchun 130023 Peoples R China;

    Jilin Univ Minist Educ Key Lab Groundwater Resources & Environm Changchun 130021 Peoples R China|Jilin Univ Coll Environm & Resources Changchun 130023 Peoples R China;

    Jilin Univ Minist Educ Key Lab Groundwater Resources & Environm Changchun 130021 Peoples R China|Jilin Univ Coll Environm & Resources Changchun 130023 Peoples R China;

    Jilin Univ Minist Educ Key Lab Groundwater Resources & Environm Changchun 130021 Peoples R China|Jilin Univ Coll Environm & Resources Changchun 130023 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DNAPLs; parameter optimization; simulation optimization; surrogate model;

    机译:DNAPLS;参数优化;仿真优化;代理模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号