首页> 外文期刊>Environmental Engineering Science >Simple Formulae for Velocity, Depth of Flow, and Slope Calculations in Partially Filled Circular Pipes
【24h】

Simple Formulae for Velocity, Depth of Flow, and Slope Calculations in Partially Filled Circular Pipes

机译:部分填充圆形管道中速度,流量深度和坡度计算的简单公式

获取原文
获取原文并翻译 | 示例

摘要

The application of the Manning equation to partially filled circular pipes is considered. Three different approaches based on the Manning equation are analyzed and compared: (1) using a constant value for the roughness coefficient n and defining the hydraulic radius as the flow area divided by the wetted perimeter. (2) Taking the variation of n with the depth of flow into account and employing the same definition of the hydraulic radius. (3) Defining the hydraulic radius as the flow area divided by the sum of the wetted perimeter and one-half of the width of the air-water surface and assuming n is constant. It is shown that the latter two approaches lead to similar predictions when 0.1 ≤ h/D ≤ 1.0. With any one of these approaches, tedious iterative calculations become necessary when diameter (D), slope (S), and flow rate (Q) are given, and one needs to find the depth of flow (h/D) and the velocity (V). Simple explicit formulas are derived for each of the three approaches. These equations are accurate enough to be used in design and sufficiently simple to be used with a hand calculator.
机译:考虑将曼宁方程应用于部分填充的圆形管道。分析和比较了基于Manning方程的三种不同方法:(1)使用粗糙度系数n的常数并将水力半径定义为流动面积除以润湿周长。 (2)考虑到n随着流动深度的变化,并采用相同的水力半径定义。 (3)将水力半径定义为流量面积除以润湿周长与气水表面宽度一半的总和,并假设n为常数。结果表明,当0.1≤h / D≤1.0时,后两种方法得出相似的预测。使用这些方法中的任何一种,当给出直径(D),斜率(S)和流量(Q)时,都需要进行繁琐的迭代计算,并且需要找到流量深度(h / D)和速度( V)。为这三种方法中的每一种推导简单的显式公式。这些方程式足够精确,可以用于设计中,并且足够简单,可以与手持计算器一起使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号