首页> 外文期刊>Engineering >Mexican Sign Language Recognition Using Jacobi-Fourier Moments
【24h】

Mexican Sign Language Recognition Using Jacobi-Fourier Moments

机译:使用Jacobi-Fourier矩进行墨西哥手语识别

获取原文
获取原文并翻译 | 示例

摘要

The present work introduces a system for recognizing static signs in Mexican Sign Language (MSL) using Jacobi-Fourier Moments (JFMs) and Artificial Neural Networks (ANN). The original color images of static signs are cropped, segmented and converted to grayscale. Then to reduce computational costs 64 JFMs were calculated to represent each image. The JFMs are sorted to select a subset that improves recognition according to a metric proposed by us based on a ratio between dispersion measures. Using WEKA software to test a Multilayer-Perceptron with this subset of JFMs reached 95% of recognition rate.
机译:本工作介绍了一种使用Jacobi-Fourier矩(JFM)和人工神经网络(ANN)识别墨西哥手语(MSL)中的静态符号的系统。静态标志的原始彩色图像被裁剪,分割并转换为灰度。然后,为减少计算成本,计算了64个JFM以代表每个图像。根据分散指标之间的比率,根据我们提出的指标对JFM进行排序,以选择可提高识别度的子集。使用WEKA软件来测试带有此JFM子集的多层感知器达到了95%的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号