首页> 外文期刊>Engineering with Computers >A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis
【24h】

A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis

机译:基于机器学习的估计石墨烯氧化物增强纳米复合材料的温度依赖性模态的模型及其在热影响屈曲分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, analytical functions for the estimation of the temperature-dependent behaviors of poorly and highly dispersed graphene oxide reinforced nanocomposite (GORNC) materials are studied in the framework of a machine learning-based approach. The validity of the presented models is shown comparing the results achieved from this modeling with those reported in the open literature. Also, the application of the obtained functions in solving the thermal buckling problem of beams constructed from such nanocomposites is demonstrated based on an energy-based method incorporated with a shear deformable beam hypothesis. The verification of the results indicates that the presented mechanical model can approximate the buckling behaviors of nanocomposite beams with remarkable precision. It can be realized from the results that the tem-perature plays an indispensable role in the determination of the buckling load which can be endured by the nanocomposite structure.
机译:本文研究了基于机器学习方法的框架,研究了用于估计较差和高度分散的石墨烯氧化物增强纳米复合材料(Gornc)材料的温度依赖性行为的分析函数。 显示了呈现模型的有效性,比较了与在公开文学中报道的那些建模中实现的结果。 而且,基于掺入剪切可变形光束假设的基于能量的方法,证明了所获得的求解由这种纳米复合材料构成的梁的热屈曲问题的应用。 结果的验证表明,所示的机械模型可以用显着的精度近似纳米复合梁的屈曲行为。 从结果可以实现,TEM-CHEATION在确定可以通过纳米复合结构承受的屈曲负荷的确定中起不可或缺的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号