机译:基于机器学习的估计石墨烯氧化物增强纳米复合材料的温度依赖性模态的模型及其在热影响屈曲分析中的应用
School of Industrial Engineering College of Engineering University of Tehran Tehran Iran;
Department of Mechanical Engineering Faculty of Engineering Imam Khomeini International University Qazvin Iran;
School of Mechanical Engineering College of Engineering University of Tehran Tehran Iran;
School of Mechanical Engineering College of Engineering University of Tehran Tehran Iran;
School of Industrial Engineering College of Engineering University of Tehran Tehran Iran;
Machine learning; Graphene oxide reinforced nanocomposites; Thermal buckling; Shear deformable beam theory;
机译:FG石墨烯纳米薄层增强多孔纳米复合材料MCST基环形/圆形微孔板的热屈曲分析
机译:Graphene血小板使用广义差分正交法加固多孔功能梯度纳米复合梁的热屈曲分析
机译:嵌入石墨烯氧化物粉末增强纳米复合壳的屈曲分析
机译:氧化石墨烯/乙烯基酯树脂纳米复合材料:氧化石墨烯,热稳定性和固化动力学模型的影响
机译:显微型造型,基于机器学习的建模和热和等离子体原子层沉积的最佳运行
机译:MWCNT或具有改进的热氧化稳定性的MWCNT或杂化MWCNT /石墨烯纳米片增强的导电和导热低密度聚乙烯基纳米复合材料
机译:具有温度依赖性的功能级波状碳纳米管增强加筋圆柱形纳米复合壳的热屈曲