首页> 外文期刊>Engineering with Computers >Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads
【24h】

Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads

机译:梯度树提升机器学习预测冲击载荷下RC面板的故障模式

获取原文
获取原文并翻译 | 示例

摘要

This paper proposed a new approach in predicting the local damage of reinforced concrete (RC) panels under impact loading using gradient boosting machine learning (GBML), one of the most powerful techniques in machine learning. A number of experimental data on the impact test of RC panels were collected for training and testing of the proposed model. With the lack of test data Duc to the high cost and complexity of the structural behavior of the panel under impact loading, it was a challenge to predict the failure mode accurately. To overcome this challenge, this study proposed a machine-learning model that uses a robust technique to solve the problem with a minimal amount of resources. Although the accuracy of the prediction result was not as high as expected Duc to the lack of data and the unbalance experimental output features, this paper provided a new approach that may alternatively replace the conventional method in predicting the failure mode of RC panel under impact loading. This approach is also expected to be widely used for predicting the structural behavior of component and structures under complex and extreme loads.
机译:本文提出了一种采用梯度升压机学习(GBML)预测冲击加载下钢筋混凝土(RC)面板局部损伤的新方法,是机器学习中最强大的技术之一。收集了关于RC面板的冲击试验的许多实验数据,用于培训和测试所提出的模型。随着测试数据DUC缺乏对冲击负载下面板结构行为的高成本和复杂性的高成本和复杂性,准确地预测失效模式是一项挑战。为了克服这一挑战,这项研究提出了一种机器学习模型,它使用稳健的技术来解决最小的资源问题。虽然预测结果的准确性与缺乏数据和不平衡的实验输出特征的预期DUC并不高,但是提供了一种新方法,可以替代替代常规方法预测冲击载荷下RC面板的故障模式。该方法还预期广泛用于预测复杂和极端负载下的组件和结构的结构行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号