首页> 外文期刊>Engineering with Computers >An approach using random forest intelligent algorithm to construct a monitoring model for dam safety
【24h】

An approach using random forest intelligent algorithm to construct a monitoring model for dam safety

机译:一种采用随机林智能算法构建水坝安全监测模型的方法

获取原文
获取原文并翻译 | 示例

摘要

The mechanism of dam safety monitoring model is analyzed; for the dam system comprehensive affected by multi-factor, the mapping relationship between the influence factors and the dam behavior effects domain is usually nonlinear. Synthesizing each kind of factor, 27 parameters are chosen as the main factors which affect the accuracy of the monitoring model. Taking the actual monitoring data as the evaluation factor, the dam safety monitoring model based on the random forest (RF) intelligent algorithm was built with the actual monitoring data to predict uplift pressure. At the same time, test the significance of each variable based on the RF monitoring model and calculate the importance degree of each variable for the model through the importance function. It is indicated that RF model can be relatively fast and accurately predict the uplift pressure of the dam according to the influence factors. The average prediction accuracy is more than 95%. As compared with other intelligent algorithms such as support vector machine, RF has better robustness, higher prediction accuracy, and faster convergence speed. Because of the uniformity of the calculation procedure and the universality of the prediction method, the RF model also has reasonable extrapolation for other dam safety monitoring models (such as crack opening and seepage discharge). Significance test results obtained by the two methods have shown that the impact of reservoir water level and daily rainfall on the uplift pressure is significant, and other factors' impact on dam deformation is unstable and changes with the external environmental influence.
机译:分析了大坝安全监测模型的机制;对于受多因素影响的大坝系统,影响因素与大坝行为效应域之间的映射关系通常是非线性的。将每种因子合成,选择27个参数作为影响监测模型精度的主要因素。将实际监测数据作为评估因素,基于随机林(RF)智能算法的大坝安全监测模型采用实际监测数据构建,以预测升压压力。同时,根据RF监测模型测试每个变量的重要性,并通过重要函数计算模型的每个变量的重要程度。结果表明,根据影响因素,RF模型可以相对速度,准确地预测大坝的升压压力。平均预测精度超过95%。与诸如支持向量机等的其他智能算法相比,RF具有更好的鲁棒性,更高的预测精度和更快的收敛速度。由于计算过程的均匀性和预测方法的普遍性,RF模型也具有用于其他大坝安全监测模型的合理外推(例如裂缝开口和渗流放电)。通过两种方法获得的重要性测试结果表明,储层水位和日降雨对隆起压力的影响是显着的,而其他因素对坝变形的影响是不稳定的,并且随着外部环境影响而变化。

著录项

  • 来源
    《Engineering with Computers》 |2021年第1期|39-56|共18页
  • 作者

    Xing Li; Zhiping Wen; Huaizhi Su;

  • 作者单位

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Hohai University Nanjing 210098 China College of Water Conservancy and Hydropower Engineering Hohai University Nanjing 210098 China;

    Department of Computer Engineering Nanjing Institute of Technology Nanjing 211167 China;

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Hohai University Nanjing 210098 China College of Water Conservancy and Hydropower Engineering Hohai University Nanjing 210098 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dam safety; Monitoring model; Random forest; Support vector machine; Significance test;

    机译:大坝安全;监测模型;随机森林;支持向量机;意义测试;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号