首页> 外文期刊>Engineering with Computers >A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network
【24h】

A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network

机译:基于神经网络智能系统的富驰繁荣的蒙特卡罗仿真方法

获取原文
获取原文并翻译 | 示例

摘要

One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole's diameter (D), hole's depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock.
机译:地表矿山中的一个不良现象之一,导致人类和设施的各种危害,是传奇。似乎仔细研究了这个主题及其对环境的影响,可以影响研究区的繁荣危险的控制。因此,在这方面,可以考虑使用能够预测和模拟乘船的风险的智能模型和方法。使用非线性模型和蒙特卡罗(MC)仿真进行目前的研究。本研究中使用的数据包括由马来西亚的矿山抛出的260个岩石样本。这些型号中使用的参数包括孔的直径(d),孔的深度(HD),间距(BS)的负担,茎干(ST),每个延迟(MC)和粉末因子(PF)。首先,使用多元回归分析(MRA)和人工神经网络(ANN)模型以在依赖和独立参数之间开发非线性关系。 Ann模型是矿井中的锭剂的适当预测因素。然后使用最佳的ANN模型,使用MC技术模拟锭型环境现象。 MC仿真显示矿井中锭船舶范围的适当精度水平。使用此模拟,可以以90%的精度结束,即锭型现象不超过331米。在这些条件下,该模拟可用于需要风险评估的各个领域。最后,对数据进行了敏感性分析。该分析显示MC对锭鸽的影响最大。

著录项

  • 来源
    《Engineering with Computers》 |2020年第2期|713-723|共11页
  • 作者单位

    School of Resources and Safety Engineering Central South University Changsha 410083 China State Key Laboratory of Safety and Health for Metal Mines Maanshan 243000 China;

    School of Housing Building and Planning Universiti Sains Malaysia (USM) 11800 Penang Malaysia Department of Real Estate Faculty of Geo-Information and Real Estate Universiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia;

    Faculty of Mining and Metallurgy Amirkabir University of Technology Tehran Iran;

    Geographic Information Science Research Group Ton Duc Thang University Ho Chi Minh City Vietnam Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam;

    UTM Construction Research Centre Institute for Smart Infrastructure and Innovative Construction (ISIIC) Faculty of Civil Engineering Universiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia;

    Faculty of Civil and Environmental Engineering Amirkabir University of Technology Tehran 15914 Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Monte Carlo simulation; Flyrock phenomenon; ANN; Risk assessment; Sensitivity analysis;

    机译:蒙特卡罗模拟;英超现象;安;风险评估;敏感性分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号