首页> 外文期刊>Engineering with Computers >A spline wavelet finite element formulation of thin plate bending
【24h】

A spline wavelet finite element formulation of thin plate bending

机译:薄板弯曲的样条小波有限元公式

获取原文
获取原文并翻译 | 示例

摘要

The wavelet scaling functions of spline wavelets are used to construct the displacement interpolation functions of triangular and rectangular thin plate elements. The displacement shape functions are then expressed by spline wavelet functions. A spline wavelet finite element formulation of thin plate bending is developed by using the virtual work principle. Two numerical examples have shown that the bending deflections and moments of thin plates agree well with those obtained by the differential equations and conventional elements. It is demonstrated that the current spline wavelet finite element method (FEM) can achieve a high numerical accuracy and converges fast. The proposed spline wavelet finite element formulation has a wide range of applicability since it is developed in the same way like conventional displacement-based FEM.
机译:样条小波的小波缩放函数用于构造三角形和矩形薄板单元的位移插值函数。然后用样条小波函数表示位移形状函数。利用虚拟工作原理建立了薄板弯曲的样条小波有限元公式。两个数值示例表明,薄板的弯曲挠度和弯矩与微分方程和常规单元获得的结果非常吻合。结果表明,目前的样条小波有限元方法可以达到较高的数值精度和收敛速度。所提出的样条小波有限元公式具有广泛的适用性,因为它的开发方式与常规基于位移的FEM相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号