首页> 外文期刊>Engineering with Computers >Jacobian-based repair method for finite element meshes after registration
【24h】

Jacobian-based repair method for finite element meshes after registration

机译:配准后基于雅可比的有限元网格修复方法

获取原文
获取原文并翻译 | 示例

摘要

Registration methods are used in the meshing field to "adapt" a given mesh to a target domain. Finite element method (FEM) is applied to the resulting mesh to compute an approximate solution to the system of partial differential equations (PDE) representing the physical phenomena under study. Prior to FE analysis the Jacobian matrix determinant must be checked for all mesh elements. The value of this Jacobian depends on the configuration of the element nodes. If it is negative for a given node, the element is invalid and therefore the FE analysis cannot be carried out. Similarly, some elements, although valid, can present poor quality regarding Jacobian-based indicator values, such as the Jacobian ratio. Mesh registration procedures are likely to produce invalid and/or poor quality elements if the Jacobian parameter is ignored. To repair invalid and poor quality elements after mesh registration, we propose a relaxation procedure driven by specific validity and quality energy formulations derived from the Jacobian value. The algorithm first recovers mesh validity and further improves elements quality, focusing primarily on nodes that make the elements invalid or of poor quality. Our novel approach has been developed in the context of non-rigid mesh registration and validated on a data set of 60 clinical cases in the context of orthopaedic and orthognathic hard and soft tissues modelling studies. The proposed repair method achieves a valid state of the mesh and also raises the quality of the elements to a level suitable for commercial FE solvers.
机译:配准方法用于网格划分字段中,以将给定的网格“适配”到目标域。将有限元方法(FEM)应用于所得网格,以计算表示所研究物理现象的偏微分方程(PDE)系统的近似解。在进行有限元分析之前,必须检查所有网格元素的Jacobian矩阵行列式。该雅可比行列式的值取决于元素节点的配置。如果对于给定节点为负,则该元素无效,因此无法进行FE分析。同样,某些元素尽管有效,但对于基于雅可比的指标值(例如雅可比),其质量可能较差。如果忽略雅可比参数,则网格注册过程可能会生成无效和/或质量较差的元素。为了在网格注册后修复无效和劣质元素,我们提出了一种松弛过程,该过程由特定有效性和从雅可比值得出的质量能公式驱动。该算法首先恢复网格有效性,然后进一步提高元素质量,主要集中在使元素无效或质量差的节点上。我们的新方法是在非刚性网格注册的背景下开发的,并在整形外科和正颌软硬组织建模研究的背景下对60个临床病例的数据集进行了验证。所提出的修复方法可以实现网格的有效状态,并且还可以将元素的质量提高到适合商用有限元求解器的水平。

著录项

  • 来源
    《Engineering with Computers》 |2011年第3期|p.285-297|共13页
  • 作者单位

    TIMC-IMAG UMR CNRS 5525, Pavilion Taillefer,Faculte de Medecine, Domaine de la Merci,38706 La Tronche Cedex, France;

    TIMC-IMAG UMR CNRS 5525, Pavilion Taillefer,Faculte de Medecine, Domaine de la Merci,38706 La Tronche Cedex, France;

    Departamento de Informatica, Universidad Tecnica Federico Santa Maria, Av. Vicuna Mackenna 3939, San Joaqufn, 8940897 Santiago, Chile;

    Departamento de Ciencias de la Computation,Universidad de Chile, Blanco Encalada 2120, 4to piso, 837-0459 Santiago, Chile;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    meshing • mesh repair • registration • finiteelement method • quality improvement;

    机译:网格划分•网格修复•配准•有限元法•质量改进;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号