首页> 外文期刊>Engineering with Computers >A local meshless method for solving multi-dimensional Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems arising in plasma physics
【24h】

A local meshless method for solving multi-dimensional Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems arising in plasma physics

机译:求解等离子体物理学中产生的多维Vlasov-Poisson和Vlasov-Poisson-Fokker-Planck系统的局部无网格方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we use a linear combination of the shape functions of reproducing kernel particle method (RKPM) and RBFs for achieving the unknown weights into each stencil. We obtain an error bound for the new shape function. Also, in this paper, we investigate a numerical procedure based on the presented technique for solving the Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems. The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma. The Vlasov-Poisson equations are used to describe various phenomena in plasma, in particular Landau damping and the distributions in a double layer plasma. We use the RKPM/RBF-FD technique for discretization of space direction and employ the method of lines to achieve a high-order accuracy in temporal direction. Numerical examples are reported which demonstrate the theoretical results and the efficiency of proposed scheme.
机译:在本文中,我们使用复制核粒子方法(RKPM)和RBF的形状函数的线性组合,以实现每个模具中未知的权重。我们获得了新形状函数的误差范围。同样,在本文中,我们研究了基于提出的技术求解Vlasov-Poisson和Vlasov-Poisson-Fokker-Planck系统的数值程序。 Vlasov方程是描述等离子体分布函数随时间变化的微分方程。 Vlasov-Poisson方程用于描述等离子体中的各种现象,特别是Landau阻尼和双层等离子体中的分布。我们使用RKPM / RBF-FD技术对空间方向进行离散化,并采用线法在时间方向上实现高阶精度。数值算例表明了理论结果和所提方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号