首页> 外文期刊>Engineering with Computers >A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives
【24h】

A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives

机译:带分数阶导数的加热广义二阶流体的Rayleigh-Stokes问题数值解的有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Abstract Our main aim in the current paper is to find a numerical plan for 2D Rayleigh-Stokes model with fractional derivative on irregular domains such as circular, L-shaped and a unit square with a circular and square hole. The employed fractional derivative is the Riemann-Liou-ville sense. Also, by integrating the equation corresponding to the time variable and then using the Galerkin FEM for the space direction, we obtain a full discrete scheme. The unconditional stability and the convergence estimate of the new scheme have been concluded. Finally, we evaluate results of Galerkin FEM with other numerical methods.
机译:摘要我们当前的主要目的是找到二维Rayleigh-Stokes模型的数值方案,该模型在不规则区域上具有分数导数,例如圆形,L形以及具有圆形和方孔的单位正方形。所采用的分数导数是黎曼-里维尔感。同样,通过积分对应于时间变量的方程,然后将Galerkin FEM用于空间方向,我们获得了一个完整的离散方案。得出了新方案的无条件稳定性和收敛估计。最后,我们用其他数值方法评估Galerkin有限元分析的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号