首页> 外文期刊>Engineering Structures >A numerical method for static or dynamic stiffness matrix of non-uniform members resting on variable elastic foundations
【24h】

A numerical method for static or dynamic stiffness matrix of non-uniform members resting on variable elastic foundations

机译:可变弹性地基上非均匀杆件静态或动态刚度矩阵的数值方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a generalized numerical method which is based on the well-known Mohr method. Static or dynamic stiffness matrices, as well as nodal load vectors for the static case, of non-uniform members are derived for several effects. The method focuses on the effects of resting on variable one- or two-parameter elastic foundations or supported by no foundation; a variable iterative algorithm is developed for computer application of the method. The algorithm enables the non-uniform member to be regarded as a sub-structure. This provides an important advantage to encompass all the variable effects in the stiffness matrix of this sub-structure. Stability and free-vibration analyses of the sub-structure can also be carried out through this method. Parametric and numerical examples are given to verify the accuracy and efficiency of the submitted method.
机译:本文提出了一种基于著名的Mohr方法的广义数值方法。对于几种效果,得出了非均匀成员的静态或动态刚度矩阵以及静态情况下的节点载荷矢量。该方法着重于搁置在可变的一或两参数弹性基础上或没有基础支撑的效果。为该方法的计算机应用开发了一种变量迭代算法。该算法使非均匀成员被视为子结构。这提供了一个重要的优势,可以将所有可变影响包含在该子结构的刚度矩阵中。子结构的稳定性和自由振动分析也可以通过这种方法进行。给出了参数和数值示例,以验证所提交方法的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号