首页> 外文期刊>Engineering Structures >Frequency response function based damage identification using principal component analysis and pattern recognition technique
【24h】

Frequency response function based damage identification using principal component analysis and pattern recognition technique

机译:基于主成分分析和模式识别技术的基于频率响应函数的损伤识别

获取原文
获取原文并翻译 | 示例

摘要

Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated.The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein.A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
机译:模式识别是一种使用测得的动态数据识别结构损伤的有前途的方法。模式识别的许多研究已采用人工神经网络(ANN)和遗传算法作为匹配模式特征的系统方法。对于所有结构损伤识别方法而言,损伤敏感和噪声不敏感的图案特征的选择都很重要。因此,本文提出了一种使用频率响应函数(FRF)数据的基于神经网络的损伤检测方法。该方法可以有效地考虑生成训练模式的测量数据的不确定性。该方法减小了初始FRF数据的维数,并将其转换为新的损伤指标,并采用ANN方法对实际损伤进行了定位,并使用公认的损伤模式进行了量化来自算法。在土木工程应用中,现场条件下的动态响应测量始终包含来自环境因素的噪声成分。为了用噪声污染的数据评估该策略的性能,还将噪声污染的测量结果引入了该算法。具有最佳架构的人工神经网络可提供最少的培训和测试错误,并提供精确的损伤检测结果。为了最大化损坏检测结果,通过尝试和错误方法定义隐藏层的数量和每个隐藏层的神经元数量,可以确定ANN的最佳架构。在实际测试中,获得结构响应的测量点数和测量位置对于损坏检测至关重要。因此,本文还研究了用于改善损伤识别的最佳传感器放置。两层框架结构的有限元模型用于训练神经网络。它显示出准确的性能,并针对单个和多个损坏情况提供了模拟和噪声污染的数据,从而降低了误差。结果,所提出的方法可以用于结构健康监测和损伤检测,特别是对于测量数据非常大的情况。此外,建议最佳的ANN架构可以以较高的准确度检测损坏的发生,并可以在损坏程度不同的情况下以合理的准确度提供损坏量化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号