首页> 外文期刊>Engineering Structures >Modeling and mitigation of excessive dynamic responses of wind turbines founded in warm permafrost
【24h】

Modeling and mitigation of excessive dynamic responses of wind turbines founded in warm permafrost

机译:在多年冻土区中建立的风力涡轮机过度动态响应的建模和缓解

获取原文
获取原文并翻译 | 示例

摘要

Field monitoring data provide evidence of excessive vibration on the wind turbines founded in warm permafrost (referring to soils frozen for more than two consecutive years with a temperature close to its melting point), which was attributed to resonance between the rotor and the tower-foundation system. This study presents a finite element (FE) model of the turbine-tower-foundation-soil system for analyzing causes of resonance and assessing effectiveness of mitigation measures. This model decouples the aerodynamic effects of the rotor from the turbine system. Aerodynamic simulation of the rotor was performed to provide wind thrust time series on the tower top. The lateral interaction between pile foundation and warm permafrost was modeled by distributed p-y springs and details on how to evaluate the permafrost p-y curves were provided. The FE model was used to investigate the sensitivity of wind turbine structural fundamental frequency to the permafrost temperature. It is found that, in addition to 9% seasonal change, the turbine-tower-foundation-soil fundamental frequency can decrease by 7% when the permafrost temperature increases from -2 degrees C to 0 degrees C. Analyses by using this model show that resonance can occur when the rotor speed is in the vicinity of the structural fundamental frequency, and increase the fatigue load on both the tower and foundation. The resonance is likely caused by the seasonal and long-term change in fundamental frequency of the turbine-tower-foundation-soil system and the inability of the controller to adjust its control parameters with time. Results show one tuned-mass-damper of 3% mass ratio is capable of reducing the tower peak acceleration and displacement during resonance by 50%, and reducing the peak shear and bending moment in the foundation by 40%. Adopting a controller with parameter updating capability together with using passive structural control techniques such as tuned-mass-dampers may be an effective control design strategy for wind turbines founded in warm permafrost. (C) 2017 Elsevier Ltd. All rights reserved.
机译:现场监测数据提供了在温暖的多年冻土层中(指的是连续冻结超过两年且温度接近其熔点的土壤)中存在的风力涡轮机过度振动的证据,这归因于转子和塔架基础之间的共振系统。这项研究提出了一个涡轮机-塔-基础-土壤系统的有限元(FE)模型,用于分析共振原因并评估缓解措施的有效性。该模型将转子的空气动力效应与涡轮系统解耦。进行了转子的空气动力学模拟,以提供塔顶的风推力时间序列。利用分布的p-y弹簧模拟了桩基与温暖的多年冻土之间的横向相互作用,并提供了有关如何评估多年冻土p-y曲线的详细信息。有限元模型用于研究风机结构基频对多年冻土温度的敏感性。研究发现,当多年冻土温度从-2摄氏度增加到0摄氏度时,汽轮机塔基础土壤基频可以降低7%。使用该模型进行的分析表明:当转子速度在结构基本频率附近时会发生共振,并增加塔架和基础上的疲劳载荷。共振可能是由于涡轮-塔-基础-土壤系统的基本频率的季节性和长期变化以及控制器无法随时间调整其控制参数而引起的。结果表明,质量比为3%的一种调谐质量阻尼器能够将共振过程中塔的峰值加速度和位移降低50%,并将基础中的峰值剪切和弯矩降低40%。对于具有温暖永冻土的风力涡轮机,采用具有参数更新能力的控制器以及使用诸如调谐质量阻尼器的被动结构控制技术可能是一种有效的控制设计策略。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Engineering Structures》 |2017年第1期|36-46|共11页
  • 作者单位

    China Univ Geosci, Wuhan 430074, Hubei, Peoples R China|Univ Alaska Anchorage, Anchorage, AK USA;

    Univ Alaska Anchorage, Civil Engn Dept, 3211 Providence Dr, Anchorage, AK 99508 USA;

    China Univ Geosci, Wuhan 430074, Hubei, Peoples R China|Univ Alaska Anchorage, Anchorage, AK USA;

    Univ Alaska Anchorage, Civil Engn Dept, 3211 Providence Dr, Anchorage, AK 99508 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wind turbine; Warm permafrost; Resonance; p-y springs; Tuned mass dampers;

    机译:风力涡轮机;多年冻土;共振;p-y弹簧;调谐质量阻尼器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号