首页> 外文期刊>Engineering Structures >Deep learning for nonlinear seismic responses prediction of subway station
【24h】

Deep learning for nonlinear seismic responses prediction of subway station

机译:地铁站非线性地震反应预测的深度学习

获取原文
获取原文并翻译 | 示例

摘要

A novel and computationally inexpensive method for predicting the nonlinear seismic response of subway stations using deep learning approaches is developed to reduce the computational cost in stochastic seismic responses analysis. The proposed method takes the deformation of the free field where the subway station is located as the input to predict seismic responses of the subway station according to the characteristic of seismic responses of underground structures. One-dimensional convolutional neural network (1D-CNN) and long-short term memory (LSTM) network are adopted for seismic responses modeling of a two-story and three-span subway station in a data-driven fashion as opposed to the computational expensive physics-based finite element model. The prediction performance and extrapolating ability of both models are evaluated and compared with a baseline multi-layer perceptron (MLP) model. With the same training samples, the 1D-CNN has better prediction performance and extrapolating ability than both LSTM and the baseline MLP model and the LSTM model has the worst performance among the three models. The good prediction performance of 1D-CNN makes it suitable to be applied in the stochastic seismic responses analysis using the probability density evolution method (PDEM) which is solved by the finite-difference method (FDM). The evolution characteristics of the probability density function of the layer drift and the distribution characteristics of the peak value of layer drift can be captured by a low computational cost with the proposed method.
机译:采用深层学习方法预测地铁站的非线性地震响应的新颖和计算廉价的方法,以降低随机地震反应分析中的计算成本。所提出的方法采用地铁站所在的自由场的变形,其中根据地下结构的地震响应的特征来预测地铁站的地震响应的输入。采用一维卷积神经网络(1D-CNN)和长短期存储器(LSTM)网络以数据驱动方式以数据驱动的方式与数据驱动的方式相反的抗震响应建模基于物理的有限元模型。评估两种模型的预测性能和外推能力,并与基线多层Perceptron(MLP)模型进行比较。通过相同的训练样本,1D-CNN具有比LSTM和基线MLP模型的更好的预测性能和外推能力,并且LSTM模型具有三种模型中的最差性能。 1D-CNN的良好预测性能使得适合于使用通过有限差分法(FDM)解决的概率密度进化法(PDEM)在随机地震响应分析中应用。通过提出的方法,可以通过低计算成本捕获层漂移的概率密度函数的概率密度函数的进化特性和层漂移的峰值的分布特性。

著录项

  • 来源
    《Engineering Structures》 |2021年第1期|112735.1-112735.18|共18页
  • 作者

    Huang Pengfei; Chen Zhiyi;

  • 作者单位

    Tongji Univ Dept Geotech Engn Siping Rd 1239 Shanghai 200092 Peoples R China;

    Tongji Univ Dept Geotech Engn Siping Rd 1239 Shanghai 200092 Peoples R China|Tongji Univ State Key Lab Disaster Reduct Civil Engn Shanghai 200092 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; One dimensional CNN; LSTM; Seismic response prediction; Subway station;

    机译:深入学习;一维CNN;LSTM;地震反应预测;地铁站;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号