首页> 外文期刊>Engineering Structures >Predicting single freestanding transmission tower time history response during complex wind input through a convolutional neural network based surrogate model
【24h】

Predicting single freestanding transmission tower time history response during complex wind input through a convolutional neural network based surrogate model

机译:通过卷积神经网络的代理模型预测复杂风输入期间的单一独立式传输塔时历史响应

获取原文
获取原文并翻译 | 示例

摘要

As the steel towers in the power system are vulnerable to intensive wind loads, it is essential to understand their dynamics response to estimate its potential failure. Conventional structural analysis methods like the finite element analysis or the field test are either computational heavy or cost expensive. Thus, this paper proposes a machine learning approach based on convolutional neural network (CNN) to predict the time history response of the transmission tower during the complex wind input. By preprocessing the time history of wind load and the tower's dynamic response, a well-developed CNN can capture the time and spatial correlation of the wind load successfully and provide high accuracy results. CNN configuration, window size selection, and training data scale are carefully discussed to optimize the CNN design to maximize the prediction accuracy as well as minimize its computational time. Finally, to evaluate the performance of the surrogate model, the accuracy of the optimal CNN is tested in predicting the time history response of the transmission tower under 15 m/s to 70 m/s wind speed. The effectiveness of the CNN surrogate model is validated through a fragility model development, and its robustness is investigated using two wind inputs generated from a random wind profile and a random wind spectrum.
机译:由于电力系统中的钢塔容易受到密集的风力负荷,因此必须了解他们的动力学响应,以估计其潜在的失败。常规的结构分析方法,如有限元分析或现场测试是计算重或成本昂贵的。因此,本文提出了一种基于卷积神经网络(CNN)的机器学习方法,以预测在复杂的风输入期间传输塔的时间历史响应。通过预处理风负荷和塔的动态响应的时间历史,开发的CNN可以成功地捕获风负荷的时间和空间相关性,并提供高精度的结果。 CNN配置,窗口大小选择和训练数据量表被仔细讨论以优化CNN设计,以最大化预测精度,并最小化其计算时间。最后,为了评估代理模型的性能,测试最佳CNN的精度在预测传输塔的时间历史响应,在15米/秒钟下方至70米/升风速。 CNN代理模型的有效性通过脆弱性模型开发进行了验证,并且使用从随机风剖面和随机风光谱产生的两个风输入来研究其鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号