首页> 外文期刊>Engineering Structures >A systematic review of convolutional neural network-based structural condition assessment techniques
【24h】

A systematic review of convolutional neural network-based structural condition assessment techniques

机译:基于卷积神经网络的结构条件评估技术的系统综述

获取原文
获取原文并翻译 | 示例

摘要

With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment.
机译:随着相机,无人机和地面车辆等非接触式传感技术的最新进展,结构健康监测(SHM)社区目睹了结构系统的深度学习条件评估技术突出的增长。这些深度学习方法主要依赖于卷积神经网络(CNNS)。 CNN网络使用大量数据集进行了各种类型的损坏和异常检测和灾后侦察。然后利用培训的网络来分析更新的数据以检测损坏的类型和严重程度,增强了开发自主SHM系统中的非接触传感器的能力。近年来,研究人员已经开发了广泛的CNN架构,以适应照明和天气条件,图像质量,背景和前景噪声的程度,以及结构中的多种多组损坏。本文介绍了基础设施监测和维护背景下存在现有的基于CNN的技术的详细文献综述。根据应用于从各种结构获得的数据的CNN的特定应用和开发,该审查分为多个类。最终将详细讨论现有文献的挑战和局限,随后是关于CNN在结构条件评估中的潜在未来研究方向的简要结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号