首页> 外文期刊>Engineering Structures >Consistent higher-order beam theory for thin-walled box beams using recursive analysis: Edge-bending deformation under doubly symmetric loads
【24h】

Consistent higher-order beam theory for thin-walled box beams using recursive analysis: Edge-bending deformation under doubly symmetric loads

机译:递归分析的薄壁箱形梁的一致高阶梁理论:双重对称载荷下的边弯曲变形

获取原文
获取原文并翻译 | 示例

摘要

Thin-walled box beams generally exhibit complex sectional deformations that are not significant in solid beams. Accordingly, a higher-order beam theory suitable for the analysis of thin-walled box beams should include degrees of freedom representing sectional deformations. In a recent study, a recursive analysis method to systematically derive sectional membrane deformations has been proposed to establish a consistent higher-order beam theory. In this study, another recursive analysis method is proposed that is suitable for the closed-form derivation of new sectional bending deformations representing the bending of edges (or walls) of the cross-section shown in a box beam under doubly symmetric loads. A consistent 1D higher-order beam theory appropriate to include these additional deformation modes as beam degrees of freedom is also established. The proposed theory provides explicit formulas that relate stresses to generalized forces including self-equilibrated forces such as bimoments. Furthermore, sectional modes are hierarchically derived so that the level of solution accuracy can be effectively and systematically controlled. Thus, the accuracy for static displacement/stress calculations and eigenfrequencies can be adjusted to be fully comparable with plate/shell results. When general doubly symmetric loads are applied to a box beam, the edge membrane modes derived in an earlier study can also be used as additional degrees of freedom besides the edge-bending modes derived in this study. The validity of the proposed beam approach is verified through the analyses of static displacements and stresses as well as eigenfrequencies for free vibration problems.
机译:薄壁箱形梁通常表现出复杂的截面变形,这在实心梁中并不明显。因此,适用于薄壁箱形梁分析的高阶梁理论应包括代表截面变形的自由度。在最近的研究中,已经提出了一种递归分析方法来系统地得出截面膜的变形,以建立一致的高阶束理论。在这项研究中,提出了另一种递归分析方法,该方法适用于闭合截面推导表示在双重对称载荷下箱形梁中所示横截面的边缘(或壁)弯曲的新截面弯曲变形。建立了一致的一维高阶梁理论,适用于将这些附加变形模式包括在梁自由度中。提出的理论提供了将应力与广义力(包括自平衡力,例如双矩)相关联的明确公式。此外,分段模式是分层推导的,因此可以有效而系统地控制求解精度。因此,可以调整静态位移/应力计算和本征频率的精度,使其与板/壳体结果完全可比。当将一般的双对称载荷施加到箱形梁上时,早期的研究中得出的边缘膜模态除本研究中得出的边缘弯曲模态外,还可以用作附加的自由度。通过分析静态位移和应力以及自由振动的本征频率,验证了所提梁方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号