首页> 外文期刊>IEEE Transactions on Engineering Management >Divide and Conquer? ${k}$-Means Clustering of Demand Data Allows Rapid and Accurate Simulations of the British Electricity System
【24h】

Divide and Conquer? ${k}$-Means Clustering of Demand Data Allows Rapid and Accurate Simulations of the British Electricity System

机译:分而治之?需求数据的$ {k} $均值聚类允许对英国电力系统进行快速准确的模拟

获取原文
获取原文并翻译 | 示例

摘要

We use a $k$-means clustering algorithm to partition national electricity demand data for Great Britain and apply a novel profiling method to obtain a set of representative demand profiles for each year over the period 1994–2005. We then use a simulated dispatch model to assess the accuracy of these daily profiles against the complete dataset on a year-to-year basis. We find that the use of data partitioning does not compromise the accuracy of the simulations for most of the main variables considered, even when simulating significant intermittent wind generation. This technique yields 50-fold gains in terms of computational speed, allowing complex Monte Carlo simulations and sensitivity analyses to be performed with modest computing resource.
机译:我们使用$ k $ -means聚类算法对英国的国家电力需求数据进行分区,并应用一种新颖的分析方法来获得1994-2005年期间每年的一组有代表性的需求概况。然后,我们使用模拟调度模型逐年对完整数据集评估这些每日配置文件的准确性。我们发现,即使在模拟显着的间歇性风力产生时,数据分区的使用也不会影响所考虑的大多数主要变量的模拟精度。这项技术的计算速度提高了50倍,从而允许使用适度的计算资源来执行复杂的蒙特卡洛模拟和灵敏度分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号