首页> 外文期刊>Engineering Management, IEEE Transactions on >Multiobjective Local Search Algorithm-Based Decomposition for Multiobjective Permutation Flow Shop Scheduling Problem
【24h】

Multiobjective Local Search Algorithm-Based Decomposition for Multiobjective Permutation Flow Shop Scheduling Problem

机译:多目标置换流水车间调度问题的基于多目标局部搜索算法的分解

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the multiobjective solutions of the flow shop scheduling problem with and without sequence dependent setup times. In our case, the two objectives are the minimization of makespan and total flowtime. These problems are solved with a novel multiobjective local search framework-based decomposition, called multiobjective local search based decomposition (MOLSD), which decomposes a multiobjective problem into a number of single objective optimization subproblems using aggregation method and optimizes them simultaneously. First, a problem-specific Nawaz–Enscore–Hoam heuristic is used to initialize the population to enhance the quality of the initial solution. Second, a Pareto local search embedded with a heavy perturbation operator is applied to search the promising neighbors of each nondominated solution found so far. Then, when solving each subproblem, a single insert-based local search, a multiple local search strategy, and a doubling perturbation mechanism are designed to exploit the new individual. Finally, a restarted method is used to avoid the algorithm trapping into the local optima, which has a significant effect on the performance of the MOLSD. Comprehensive experiments have been conducted by two standard multiobjective metrics: 1) hyper-volume indicator; and 2) set coverage. The experimental results show that the proposed MOLSD provides better solutions that several state of the art algorithms.
机译:本文着重于有无序列依赖建立时间的流水车间调度问题的多目标解决方案。在我们的案例中,两个目标是最小化制造时间和总流动时间。这些问题是通过一种新颖的基于多目标局部搜索框架的分解(称为多目标基于局部搜索的分解(MOLSD))解决的,该分解方法使用聚合方法将多目标问题分解为多个单目标优化子问题,并同时对其进行优化。首先,使用特定于问题的Nawaz–Enscore–Hoam启发式方法来初始化总体,以提高初始解决方案的质量。其次,使用嵌入了重扰动算子的Pareto局部搜索来搜索到目前为止找到的每个非支配解的有希望的邻居。然后,在解决每个子问题时,将设计一个基于插入的单个本地搜索,多个本地搜索策略以及双倍摄动机制来利用新个体。最后,使用重新启动的方法来避免算法陷入局部最优状态,这会对MOLSD的性能产生重大影响。通过两个标准的多目标指标进行了全面的实验:1)超量指标; 2)设置覆盖范围。实验结果表明,所提出的MOLSD提供了优于几种最新算法的更好解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号