首页> 外文期刊>Engineering Computations >On the topological enrichment for crack modeling via the generalized/extended FEM: a novel discussion considering smooth partitions of unity
【24h】

On the topological enrichment for crack modeling via the generalized/extended FEM: a novel discussion considering smooth partitions of unity

机译:关于通过广义/延长的FEM裂缝建模的拓扑浓缩:考虑统一顺利分区的小说讨论

获取原文
获取原文并翻译 | 示例

摘要

Purpose - It has been usual to prefer an enrichment pattern independent of the mesh when applying singular functions in the generalized/eXtended finite element method (G/XFEM). This choice, when modeling crack tip singularities through extrinsic enrichment, has been understood as the only way to surpass the typical poor convergence rate obtained with the finite element method (FEM), on uniform or quasi-uniform meshes conforming to the crack. Herein, the topological enrichment pattern is revisited in the light of a higher-order continuity obtained with a smooth partition of unity (PoU). Aiming to verify the smoothness' impacts on the blending phenomenon, a series of numerical experiments is conceived to compare the two GFEM versions: the conventional one, based on piecewise continuous PoU's, and another which considers PoU's with high-regularity.Design/methodology/approach - The stress approximations right at the crack tip vicinity are qualified by focusing on crack severity parameters. For this purpose, the material forces method originated from the configurational mechanics is used. Some attempts to improve solution using different polynomial enrichment schemes, besides the singular one, are discussed aiming to verify the transition/blending effects. A classical two-dimensional problem of the linear elastic fracture mechanics (LEFM) is solved, considering the pure Mode I and the mixed-mode loading.Findings - The results reveal that, in the presence of smooth PoU's, the topological enrichment can still be considered as a suitable strategy for extrinsic enrichment. First, because such an enrichment pattern still can treat the crack independently of the mesh and deliver some advantage in terms of convergence rates, under certain conditions, when compared to the conventional FEM. Second, because the topological pattern demands fewer degrees of freedom and impacts conditioning less than the geometrical strategy.Originality/value - Several outputs are presented, considering estimations for the J-integral and the angle of probable crack advance, this last computed from two different strategies to monitoring blending/transition effects, besides some comments about conditioning. Both h- and p-behaviors are displayed to allow a discussion from different points of view concerning the topological enrichment in smooth GFEM.
机译:目的 - 通常更喜欢在广义/扩展有限元方法(G / XFEM)中施加奇异函数时独立于网格的富集模式。这种选择通过外部富集建模裂纹尖端奇异性,已被理解为超越用有限元方法(FEM)获得的典型差的收敛速度,在符合裂​​纹的均匀或准均匀网格上的唯一方法。这里,根据具有单位(POU)的平滑分区获得的高阶连续性来重新致读物的富集模式。旨在验证对混合现象对混合现象的平滑性的影响,构思了一系列数值实验,以比较两个GFEM版本:传统的一个,基于分段连续POU,并将POU与High-Regularity.design/Methodology为接近 - 裂纹尖端附近的应力近似是通过专注于裂缝严重性参数的限定。为此目的,使用源自配置力学的材料力法。讨论了一些尝试使用不同多项式富集方案改进解决方案,除了单数之外,旨在验证过渡/混合效果。考虑到纯模式I和混合模式加载,求解线性弹性骨折力学(lefm)的经典二维问题。 - 结果表明,在平滑的POU存在下,拓扑富集仍然可以被认为是外部富集的合适策略。首先,因为这种富集模式仍然可以独立地对网格进行裂缝,并且与传统的FEM相比,在某些条件下,在某些条件下,在会聚速率方面提供一些优点。其次,因为拓扑模式要求较少的自由度和影响小于几何策略。除了关于调节的一些评论之外,监测混合/转换效果的策略。展示H-和P行为都允许从不同的不同观点讨论平滑GFEM中的拓扑富集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号