首页> 外文期刊>Engineering Computations >Unstructured triangular surface grid generation and intrinsic grid analysis using rational triangular patches
【24h】

Unstructured triangular surface grid generation and intrinsic grid analysis using rational triangular patches

机译:非结构化三角表面网格生成和使用有理三角形补丁的本征网格分析

获取原文
获取原文并翻译 | 示例

摘要

Purpose - To focus on grid generation which is an essential part of any analytical tool for effective discretization. Design/methodology/approach - This paper explores the application of the possibility of unstructured triangular grid generation that deals with derivationally continuous, smooth, and fair triangular elements using piecewise polynomial parametric surfaces which interpolate prescribed R~3 scattered data using spaces of parametric splines defined on R~2 triangulations in the case of surfaces in engineering sciences. The method is based upon minimizing a physics-based certain natural energy expression over the parametric surface. The geometry is defined as a set of stitched triangles prior to the grid generation. As for derivational continuities between the two triangular patches C~0 and C~1 continuity or both, as per the requirements, has been imposed. With the addition of a penalty term, C~2 (approximate) continuity can also be achieved. Since, in this work physics-based approach has been used, the grid is analyzed using intersection curves with three-dimensional planes, and intrinsic geometric properties (i.e. directional derivatives), for derivational continuity and smoothness. Findings - The triangular grid generation that deals with derivationally continuous, smooth, and fair triangular elements has been implemented in this paper for surfaces in engineering sciences. Practical implications - This paper deals with the important problem of grid generation which is an essential part of any analytical tool for effective discretization. And, the examples to demonstrate the theoretical model of this paper have been chosen from different branches of engineering sciences. Hence, the results of this paper are of practical importance for grid generation in engineering sciences. Originality/value - The paper is theoretical with worked examples chosen from engineering sciences.
机译:目的-专注于网格生成,网格生成是任何有效离散化分析工具的重要组成部分。设计/方法/方法-本文探讨了使用分段多项式参数化曲面处理非导数连续,平滑和公平三角形元素的非结构化三角网格生成可能性的应用,这些分段曲面使用已定义的参数样条空间对指定的R〜3分散数据进行插值工程科学中关于曲面的R〜2三角剖分。该方法基于最小化参数表面上基于物理学的某些自然能表达。几何形状定义为网格生成之前的一组缝合​​三角形。至于两个三角形补丁C_0和C_1之间的导数连续性,或者根据要求,两者都被施加。通过添加惩罚项,也可以实现C〜2(近似)连续性。由于在这项工作中使用了基于物理学的方法,因此使用具有三维平面的相交曲线和固有几何特性(即方向导数)对网格进行了分析,以求得出导数连续性和平滑度。发现-工程科学中的曲面已实现了三角网格生成,该网格处理了派生的连续,平滑和公平的三角形元素。实际意义-本文讨论了网格生成的重要问题,它是任何有效离散化分析工具的重要组成部分。并且,从工程科学的不同分支中选择了用于证明本文理论模型的示例。因此,本文的结果对于工程科学中的网格生成具有实际意义。原创性/价值-本文是理论性的,有选自工程科学的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号