首页> 外文期刊>Engineering Computations >Active flow control of airfoil using mesh/meshless methods coupled to hierarchical genetic algorithms for drag reduction design
【24h】

Active flow control of airfoil using mesh/meshless methods coupled to hierarchical genetic algorithms for drag reduction design

机译:使用网格/无网格方法结合分层遗传算法进行减阻设计的机翼主动流控制

获取原文
获取原文并翻译 | 示例
       

摘要

Purpose - The purpose of this paper is to investigate an active flow control technique called Shock Control Bump (SCB) for drag reduction using evolutionary algorithms. Design/methodology/approach - A hierarchical genetic algorithm (HGA) consisting of multi-fidelity models in three hierarchical topological layers is explored to speed up the design optimization process. The top layer consists of a single sub-population operating on a precise model. On the middle layer, two sub-populations operate on a model of intermediate accuracy. The bottom layer, consisting of four sub-populations (two for each middle layer populations), operates on a coarse model. It is well-known that genetic algorithms (GAs) are different from deterministic optimization tools in mimicking biological evolution based on Darwinian principle. In HGAs process, each population is handled by GA and the best genetic information obtained in the second or third layer migrates to the first or second layer for refinement. Findings - The method was validated on a real life optimization problem consisting of two-dimensional SCB design optimization installed on a natural laminar flow airfoil (RAE5243). Numerical results show that HGA is more efficient and achieves more drag reduction compared to a single population based GA. Originality/value - Although the idea of HGA approach is not new, the novelty of this paper is to combine it with mesh/meshless methods and multi-fidelity flow analyzers. To take the full benefit of using hierarchical topology, the following conditions are implemented: the first layer uses a precise meshless Euler solver with fine cloud of points, the second layer uses a hybrid mesh/meshless Euler solver with intermediate mesh/clouds of points, the third layer uses a less fine mesh with Euler solver to explore efficiently the search space with large mutation span.
机译:目的-本文的目的是研究一种使用进化算法的主动流量控制技术,称为减震凸点(SCB),用于减阻。设计/方法/方法-研究了由三个层次拓扑层中的多保真度模型组成的层次遗传算法(HGA),以加快设计优化过程。顶层由在精确模型上运行的单个子种群组成。在中间层,两个子种群在中等精度模型上运行。底层由四个子种群组成(每个中间层种群两个),在粗略模型上运行。众所周知,遗传算法(GA)与确定性优化工具在模仿基于达尔文原理的生物进化方面有所不同。在HGA流程中,每个种群都由GA处理,并且在第二层或第三层中获得的最佳遗传信息会迁移到第一层或第二层进行细化。研究结果-该方法针对实际优化问题进行了验证,该问题包括安装在自然层流翼型(RAE5243)上的二维SCB设计优化。数值结果表明,与基于单个种群的遗传算法相比,遗传算法更有效并且减少了阻力。独创性/价值-尽管HGA方法的思想并不新颖,但本文的新颖之处在于将其与网格/无网格方法和多保真流量分析器相结合。为了充分利用分层拓扑的优势,需要满足以下条件:第一层使用具有细点云的精确无网格Euler求解器,第二层使用具有中间点云/点云的混合网格/无网格Euler求解器,第三层使用不太精细的网格和Euler求解器来有效地探索具有较大突变跨度的搜索空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号