首页> 外文期刊>Engineering Applications of Artificial Intelligence >Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
【24h】

Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection

机译:遗传算法的人工神经网络和支持向量机用于轴承故障检测

获取原文
获取原文并翻译 | 示例

摘要

A study is presented to compare the performance of bearing fault detection using two different classifiers, namely, artificial neural networks (ANNs) and support vector machines (SMVs). The time-domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to the classifiers for two-class (normal or fault) recognition. The classifier parameters, e.g., the number of nodes in the hidden layer in case of ANNs and the radial basis function kernel parameter (width) in case of SVMs along with the selection of input features are optimized using genetic algorithms. The classifiers are trained with a subset of the experimental data for known machine conditions and are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine. The roles of different vibration signals and signal preprocessing techniques are investigated. The results show the effectiveness of the features and the classifiers in detection of machine condition.
机译:提出了一项研究,以比较使用两个不同的分类器,即人工神经网络(ANN)和支持向量机(SMV)的轴承故障检测性能。处理具有正常轴承和故障轴承的旋转机器的时域振动信号以进行特征提取。从原始信号和预处理信号中提取的特征用作分类器的输入,以进行两类(正常或故障)识别。使用遗传算法对分类器参数(例如,对于ANN而言,隐藏层中的节点数)和对于SVM而言的径向基函数内核参数(宽度)以及输入特征的选择进行了优化。使用已知机器条件的实验数据的子集训练分类器,并使用剩余的数据集对分类器进行测试。使用旋转机器的实验振动数据说明了该过程。研究了不同振动信号和信号预处理技术的作用。结果表明,这些特征和分类器在检测机器状态方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号