首页> 外文期刊>Engineering Applications of Artificial Intelligence >Artificial neural networks and neuro-fuzzy systems for modelling and controlling real systems: a comparative study
【24h】

Artificial neural networks and neuro-fuzzy systems for modelling and controlling real systems: a comparative study

机译:用于建模和控制真实系统的人工神经网络和神经模糊系统:对比研究

获取原文
获取原文并翻译 | 示例

摘要

This article presents a comparison of artificial neural networks and neuro-fuzzy systems applied for modelling and controlling a real system. The main objective is to model and control the temperature inside of a kiln for the ceramic industry. The details of all system components are described. The steps taken to arrive at the direct and inverse models using the two architectures: adaptive neuro fuzzy inference system and feedforward neural networks are described and compared. Finally, real-time control results using internal model control strategy are presented. Using available MATLAB software for both algorithms, the objective is to show the implementation steps for modelling and controlling a real system. Finally, the performances of the two solutions were compared through different parameters for a specific real didactic case.
机译:本文介绍了用于建模和控制真实系统的人工神经网络和神经模糊系统的比较。主要目的是为陶瓷工业建模和控制窑内温度。描述了所有系统组件的详细信息。描述并比较了使用两种体系结构来建立直接模型和逆模型的步骤:自适应神经模糊推理系统和前馈神经网络。最后,提出了使用内部模型控制策略的实时控制结果。使用适用于这两种算法的MATLAB软件,目的是显示对真实系统进行建模和控制的实现步骤。最后,针对特定的实际教学案例,通过不同的参数比较了两种解决方案的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号