首页> 外文期刊>Engineering Applications of Artificial Intelligence >A speed and accuracy test of backpropagation and RBF neural networks for small-signal models of active devices
【24h】

A speed and accuracy test of backpropagation and RBF neural networks for small-signal models of active devices

机译:有源设备小信号模型的反向传播和RBF神经网络的速度和精度测试

获取原文
获取原文并翻译 | 示例

摘要

Backpropagation networks are compared to radial basis function (RBF) networks when it comes to small signal modeling RF/microwave active devices. The modeled device is a 4 x 50 μm gate width, 0.25 μm gate length gallium arsenide (GaAs) Metal semiconductor field-effect transistor (MESFET). It is the authors' intent to prove that RBF networks provide much better performance than backpropagation when it comes to this type of modeling. First, two separate backpropagation networks are created to determine the best training algorithm in terms of convergence speed. Then, the backpropagation network, using its best training algorithm, is compared to the RBF network in terms of speed and accuracy. Simulation results are presented in tables and figures for better understanding. All tests and simulations for the backpropagation and RBF networks are done using Matlab's Neural Network Toolbox.
机译:对于小信号建模RF /微波有源设备,反向传播网络与径向基函数(RBF)网络进行了比较。建模的器件是4 x 50μm栅极宽度,0.25μm栅极长度的砷化镓(GaAs)金属半导体场效应晶体管(MESFET)。作者的意图是证明,当涉及到这种类型的建模时,RBF网络比反向传播具有更好的性能。首先,创建两个单独的反向传播网络,以根据收敛速度确定最佳训练算法。然后,将使用其最佳训练算法的反向传播网络与RBF网络的速度和准确性进行比较。仿真结果以表格和图表的形式提供,以便更好地理解。反向传播和RBF网络的所有测试和仿真都是使用Matlab的神经网络工具箱进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号