首页> 外文期刊>Engineering Applications of Artificial Intelligence >Classifiers combination and syntax analysis for Arabic literal amount recognition
【24h】

Classifiers combination and syntax analysis for Arabic literal amount recognition

机译:用于阿拉伯文字量识别的分类器组合和语法分析

获取原文
获取原文并翻译 | 示例

摘要

Automatic handwriting recognition has a variety of applications in real world problems, such as mail sorting and check processing. Recently, it has been demonstrated that combining the decisions of several classifiers and integrating multiple information sources can lead to better recognition results. This article presents an approach for recognizing handwritten Arabic literal (legal) amounts. The proposed system uses a set of holistic structural features to describe the words. These features are presented to three classifiers: multilayer neural network, k nearest neighbor, and fuzzy k nearest neighbor. The classification results are then combined using several schemes; we retained the score summation one for this work. A syntactic post-classification process is then carried out to find the best match among the candidate words. The performance of this approach is superior to the system which ignores all contextual information and simply relies on the recognition scores of the recognizers.
机译:自动手写识别在现实世界中的问题中有多种应用,例如邮件分类和检查处理。最近,已经证明,组合多个分类器的决策和整合多个信息源可以导致更好的识别结果。本文介绍了一种识别手写阿拉伯文字(法律)金额的方法。提议的系统使用一组整体结构特征来描述单词。这些特征被提供给三个分类器:多层神经网络,k最近邻和模糊k最近邻。然后使用几种方案将分类结果组合在一起。我们保留了这项工作的总分之一。然后执行语法后分类过程以在候选单词中找到最佳匹配。这种方法的性能优于忽略所有上下文信息而仅依靠识别器的识别分数的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号