首页> 外文期刊>Engineering Applications of Artificial Intelligence >Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals
【24h】

Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals

机译:混合免疫算法中二进制和实值编码的比较,用于心电信号的特征选择和分类

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a new algorithm for feature selection and classification. The algorithm is based on an immune metaphor, and combines both negative and clonal selection mechanisms characteristic for B- and T-lymphocytes. The main goal of the algorithm is to select the best subset of features for classification. Two level evolution is used in the proposed system for detectors creation and feature selection. Subpopulations of evolving detectors (T-lymphocytes) are able to discover subsets of features well suited for classification. The subpopulations cooperate during evolution by means of a novel suppression mechanism which is compared to the traditional suppression mechanism. The proposed suppression method proved to be superior to the traditional suppression in both recognition performance and its ability to select the proper number of subpopulations dynamically. Some results in the task of ECG signals classification are presented. The results for binary and real coded T-lymphocytes are compared and discussed.
机译:本文提出了一种新的特征选择和分类算法。该算法基于免疫隐喻,并结合了针对B淋巴细胞和T淋巴细胞的阴性和克隆选择机制。该算法的主要目标是选择最佳的特征子集进行分类。在提出的系统中使用了两级进化来创建检测器和选择特征。进化中的检测器(T淋巴细胞)的亚群能够发现非常适合分类的特征子集。与传统的抑制机制相比,亚群在进化过程中通过一种新颖的抑制机制进行协作。事实证明,所提出的抑制方法在识别性能和动态选择适当数量的亚种群方面都优于传统的抑制方法。提出了一些心电信号分类任务的结果。比较和讨论了二进制和实际编码的T淋巴细胞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号