首页> 外文期刊>Engineering Applications of Artificial Intelligence >Coupling control and human factors in mathematical models of complex systems
【24h】

Coupling control and human factors in mathematical models of complex systems

机译:复杂系统数学模型中的耦合控制与人为因素

获取原文
获取原文并翻译 | 示例

摘要

It is known that with the increasing complexity of technological systems that operate in dynamically changing environments and require human supervision or a human operator, the relative share of human errors is increasing across all modern applications. This indicates that in the analysis and control of such systems, human factors should not be eliminated by conventional formal mathematical methodologies. Instead, they must be incorporated into the modelling framework.rnIn this paper we analyse mathematically how such factors can be effectively incorporated into the analysis and control of complex systems. As an example, we focus our discussion around one of the key problems in the intelligent transportation systems (ITS) theory and practice, the problem of speed control, considered here as a decision making with limited information available. The problem is cast mathematically in the general framework of control problems and is treated in the context of dynamically changing environments where control is coupled to human factors. Since in this case control might not be limited to a small number of control settings, as it is often assumed in the control literature, serious difficulties arise in the solution of this problem. We demonstrate that the problem can be reduced to a set of Hamilton-Jacobi-Bellman equations where human factors are incorporated via estimations of the system Hamiltonian. In the ITS context, these estimations can be obtained with the use of on-board equipment like sensors/receivers/actuators, in-vehicle communication devices, etc. The proposed methodology provides a way to integrate human factors into the solving process of the models for other complex dynamic systems.
机译:众所周知,随着在动态变化的环境中运行并需要人工监督或人工操作的技术系统的复杂性不断提高,人为错误的相对份额在所有现代应用中都在增加。这表明在此类系统的分析和控制中,传统的形式数学方法不应消除人为因素。相反,必须将它们合并到建模框架中。在本文中,我们数学分析了如何将这些因素有效地合并到复杂系统的分析和控制中。例如,我们将讨论集中在智能运输系统(ITS)理论和实践中的关键问题之一,即速度控制问题上,此处将其视为决策,只有有限的可用信息。该问题在数学上是在控制问题的一般框架中提出的,并在控制与人为因素耦合的动态变化环境中解决。由于在这种情况下控制可能不限于少数控制设置,如控制文献中经常提到的那样,因此在解决该问题时出现了严重的困难。我们证明了该问题可以简化为一组Hamilton-Jacobi-Bellman方程,其中通过系统汉密尔顿估计来合并人为因素。在ITS上下文中,可以通过使用车载设备(例如传感器/接收器/执行器,车载通信设备等)来获得这些估计值。所提出的方法提供了一种将人为因素整合到模型求解过程中的方法用于其他复杂的动态系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号