首页> 外文期刊>Engineering Applications of Artificial Intelligence >The Design Of A Fuzzy Cascade Controller For Ball And Beam System: A Study In Optimization With The Use Of Parallel Genetic Algorithms
【24h】

The Design Of A Fuzzy Cascade Controller For Ball And Beam System: A Study In Optimization With The Use Of Parallel Genetic Algorithms

机译:球梁系统模糊串级控制器的设计:基于并行遗传算法的优化研究

获取原文
获取原文并翻译 | 示例

摘要

In this study, we introduce a design methodology for an optimized fuzzy cascade controller for ball and beam system by exploiting the use of hierarchical fair competition-based genetic algorithm (HFCGA). The ball and beam system is a well-known control engineering experimental setup which consists of servo motor, beam and ball and exhibits a number of interesting and challenging properties when considered from the control perspective. The position of ball is determined through the control of a servo motor. The displacement change of the position of ball requires the change of the angle of the beam which determines the position angle of a servo motor. Consequently, the variation of the position of the moving ball and the ensuing change of the angle of the beam results in the change of the position angle of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer (1 st) controller and the inner (2nd) controller in a cascaded architecture. Auto-tuning of the parameters of the controller (viz. scaling factors) of each fuzzy controller is realized with the use of the HFCGA. The set-point value of the inner controller (the 2nd controller) corresponds to the position angle of a servo motor, and is given as a reference value which enters into the inner controller as the 2nd controller of the two cascaded controllers. HFCGA is a kind of a parallel genetic algorithm (PGA), which helps alleviate an effect of premature convergence being a potential shortcoming present in conventional genetic algorithms (GAs). A detailed comparative analysis carried out from the viewpoint of the performance and the design methodology, is provided for the fuzzy cascade controller and the conventional PD cascade controller whose design relied on the use of the serial genetic algorithms.
机译:在这项研究中,我们通过利用基于分层公平竞争的遗传算法(HFCGA)的使用,为球和梁系统引入了一种优化的模糊级联控制器的设计方法。球和梁系统是众所周知的控制工程实验装置,它由伺服电机,梁和球组成,从控制角度来看,它表现出许多有趣且具有挑战性的特性。球的位置通过伺服电机的控制来确定。球位置的位移变化需要改变光束角,从而决定伺服电机的位置角。因此,运动球的位置的变化和随之而来的光束角的变化导致伺服电动机的位置角的变化。我们介绍了由级联架构中的外部(第一)控制器和内部(第二)控制器组成的模糊级联控制器方案。使用HFCGA可以实现每个模糊控制器的控制器参数(即比例因子)的自动调整。内部控制器(第二控制器)的设定值对应于伺服电机的位置角,并作为参考值给出,该参考值作为两个级联控制器中的第二控制器进入内部控制器。 HFCGA是一种并行遗传算法(PGA),有助于缓解过早收敛的影响,这是常规遗传算法(GA)中存在的潜在缺陷。从性能和设计方法的角度进行了详细的比较分析,为模糊级联控制器和传统的PD级联控制器的设计依赖于串行遗传算法的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号