首页> 外文期刊>Engineering Applications of Artificial Intelligence >A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms
【24h】

A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms

机译:基于神经和模糊聚类算法的复杂系统多模型辨识新方法

获取原文
获取原文并翻译 | 示例

摘要

The multimodel approach was recently developed to deal with the issues of complex systems modeling and control. Despite its success in different fields, it is still faced with several design problems, in particular the determination of the number and parameters of the different models representative of the system as well as the choice of the adequate method of validities computation used for multimodel output deduction.rnIn this paper, a new approach for complex systems modeling based on both neural and fuzzy clustering algorithms is proposed, which aims to derive different models describing the system in the whole operating domain. The implementation of this approach requires two main steps. The first step consists in determining the structure of the model-base. For this, the number of models must be firstly worked out by using a neural network and a Rival Penalized Competitive Learning (RPCL). The different operating clusters are then selected referring to two different clustering algorithms (K-means and fuzzy K-means). The second step is a parametric identification of the different models in the base by using the clustering results for model orders and parameters estimation. This step is ended in a validation procedure which aims to confirm the efficiency of the proposed modeling by using the adequate method of validity computation. The proposed approach is implemented and tested with two nonlinear systems. The obtained results turn out to be satisfactory and show a good precision, which is strongly related to the dispersion of the data and the related clustering method.
机译:最近开发了多模型方法来处理复杂的系统建模和控制问题。尽管它在不同领域取得了成功,但仍然面临一些设计问题,特别是确定代表系统的不同模型的数量和参数,以及选择用于多模型输出推论的有效性计算的适当方法.rn本文提出了一种基于神经和模糊聚类算法的复杂系统建模新方法,旨在在整个操作领域中得出描述系统的不同模型。这种方法的实施需要两个主要步骤。第一步是确定模型库的结构。为此,必须首先使用神经网络和竞争对手的惩罚性竞争学习(RPCL)来确定模型的数量。然后,参考两个不同的聚类算法(K均值和模糊K均值)选择不同的操作集群。第二步是通过使用聚类结果进行模型顺序和参数估计,对基础中的不同模型进行参数识别。该步骤以验证程序结束,该程序旨在通过使用适当的有效性计算方法来确认所提出模型的效率。所提出的方法是通过两个非线性系统实施和测试的。所得结果令人满意并且显示出良好的精度,这与数据的分散性和相关的聚类方法密切相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号