首页> 外文期刊>Engineering Applications of Artificial Intelligence >Applying input variables selection technique on input weighted support vector machine modeling for BOF endpoint prediction
【24h】

Applying input variables selection technique on input weighted support vector machine modeling for BOF endpoint prediction

机译:在BOF端点预测的输入加权支持向量机建模中应用输入变量选择技术

获取原文
获取原文并翻译 | 示例

摘要

Basic oxygen furnace (BOF) steelmaking is a complex process and dynamic model is very important for endpoint control. It is usually difficult to build a precise BOF endpoint dynamic model because many input variables affect the endpoint carbon content and temperature. For this problem, two effective variables selection steps: mechanism analysis and mutual information calculation are proposed to choose appropriate input variables according to a variable selection algorithm. Then, the selected inputs are weighted on the basis of mutual information values. Finally, two input weighted support vector machine BOF endpoint dynamic models are constructed to predict endpoint carbon content and temperature. Results show that the variable selection for BOF endpoint prediction model is essential and effective. The complexity and precise of two endpoint prediction models are improved.
机译:基本氧气炉(BOF)炼钢是一个复杂的过程,动态模型对于终点控制非常重要。通常很难建立精确的BOF终点动力学模型,因为许多输入变量会影响终点碳含量和温度。针对该问题,提出了两个有效的变量选择步骤:机理分析和互信息计算,以根据变量选择算法选择合适的输入变量。然后,基于互信息值对所选输入进行加权。最后,构建了两个输入加权支持向量机BOF终点动态模型,以预测终点碳含量和温度。结果表明,BOF终点预测模型的变量选择是必不可少且有效的。改进了两个端点预测模型的复杂度和精确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号