首页> 外文期刊>Neurocomputing >A fast and robust model selection algorithm for multi-input multi-output support vector machine
【24h】

A fast and robust model selection algorithm for multi-input multi-output support vector machine

机译:多输入多输出支持向量机的快速鲁棒模型选择算法

获取原文
获取原文并翻译 | 示例

摘要

Multi-Input Multi-Output (MIMO) regression estimation problems widely exist in engineering fields. As an efficient approach for MIMO modeling, multi-dimensional support vector regression, named M-SVR, is generally capable of obtaining better predictions than many traditional methods. However, M-SVR is sensitive to the perturbation of hyper-parameters when facing small-scale sample problems, and most of currently used model selection methods for conventional SVR cannot be applied to M-SVR directly due to its special structure. In this paper, a fast and robust model selection algorithm for M-SVR is proposed. Firstly, a new training algorithm for M-SVR is proposed to reduce efficiently the numerical errors in training procedure. Based on this algorithm, a new leave-one-out (LOO) error estimate for M-SVR is derived through a virtual LOO cross-validation procedure. This LOO error estimate can be straightway calculated once a training process ended with less computational complexity than traditional LOO method. Furthermore, a robust implementation of this LOO estimate via Cholesky factorization is also proposed. Finally, the gradients of the LOO estimate are calculated, and the hyper-parameters with lowest LOO error can be found by means of gradient decent method. Experiments on toy data and real-life dynamical load identification problems are both conducted, demonstrating comparable results of the proposed algorithm in terms of generalization performance, numerical stability and computational cost.
机译:在工程领域中广泛存在多输入多输出(MIMO)回归估计问题。作为用于MIMO建模的有效方法,多维支持向量回归(称为M-SVR)通常能够比许多传统方法获得更好的预测。然而,当面对小规模样本问题时,M-SVR对超参数的扰动敏感,并且由于其特殊的结构,大多数当前用于常规SVR的模型选择方法不能直接应用于M-SVR。提出了一种快速,鲁棒的M-SVR模型选择算法。首先,提出了一种新的M-SVR训练算法,以有效减少训练过程中的数值误差。基于此算法,通过虚拟LOO交叉验证过程导出了M-SVR的新的留一法(LOO)错误估计。一旦训练过程以比传统LOO方法更少的计算复杂度结束,就可以直接计算该LOO误差估计。此外,还提出了通过Cholesky因式分解对该LOO估计进行稳健的实现。最终,计算出了LOO估计值的梯度,并且可以通过梯度合适的方法找到LOO误差最小的超参数。都进行了玩具数据和现实生活中的动态负载识别问题的实验,从泛化性能,数值稳定性和计算成本方面证明了该算法的可比结果。

著录项

  • 来源
    《Neurocomputing》 |2014年第23期|10-19|共10页
  • 作者单位

    College of Computer and Information Technology, Henan Normal University, Xinxiang 453007, PR China;

    College of Computer and Information Technology, Henan Normal University, Xinxiang 453007, PR China;

    College of Computer and Information Technology, Henan Normal University, Xinxiang 453007, PR China;

    State Key Laboratory for Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Support vector machine; Leave-one-out error; Model selection; MIMO; Gradient decent;

    机译:支持向量机;遗忘错误选型;MIMO;梯度下降;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号