首页> 外文期刊>Engineering Applications of Artificial Intelligence >Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
【24h】

Modified bacterial foraging algorithm based multilevel thresholding for image segmentation

机译:基于改进的细菌觅食算法的多阈值图像分割

获取原文
获取原文并翻译 | 示例

摘要

Multilevel thresholding is one of the most popular image segmentation techniques. In order to determine the thresholds, most methods use the histogram of the image. This paper proposes multilevel thresholding for histogram-based image segmentation using modified bacterial foraging (MBF) algorithm. To improve the global searching ability and convergence speed of the bacterial foraging algorithm, the best bacteria among all the chemotactic steps are passed to the subsequent generations. The optimal thresholds are found by maximizing Kapur's (entropy criterion) and Otsu's (between-class variance) thresholding functions using MBF algorithm. The superiority of the proposed algorithm is demonstrated by considering fourteen benchmark images and compared with other existing approaches namely bacterial foraging (BF) algorithm, particle swarm optimization algorithm (PSO) and genetic algorithm (GA). The findings affirmed the robustness, fast convergence and proficiency of the proposed MBF over other existing techniques. Experimental results show that the Otsu based optimization method converges quickly as compared with Kapur's method.
机译:多级阈值化是最流行的图像分割技术之一。为了确定阈值,大多数方法使用图像的直方图。本文提出了改进的细菌觅食(MBF)算法对基于直方图的图像分割进行多级阈值处理。为了提高细菌搜寻算法的全局搜索能力和收敛速度,将所有趋化步骤中的最佳细菌传递给后代。通过使用MBF算法最大化Kapur(熵准则)和Otsu(类间方差)阈值函数来找到最佳阈值。通过考虑十四张基准图像,并与细菌觅食(BF)算法,粒子群优化算法(PSO)和遗传算法(GA)等其他现有方法进行比较,证明了该算法的优越性。研究结果肯定了所提出的MBF相对于其他现有技术的鲁棒性,快速收敛性和熟练度。实验结果表明,与Kapur方法相比,基于Otsu的优化方法收敛迅速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号