首页> 外文期刊>Engineering Applications of Artificial Intelligence >Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation
【24h】

Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation

机译:结合平稳小波变换和自组织图进行脑MR图像分割

获取原文
获取原文并翻译 | 示例

摘要

This study presents an image segmentation system that automatically segments and labels Tl-weighted brain magnetic resonance (MR) images. The method is based on a combination of unsupervised learning algorithm of the self-organizing maps (SOM) and supervised learning vector quantization (LVQ) methods. Stationary wavelet transform (SWT) is applied to the images to obtain multiresolution information for distinguishing different tissues. Statistical information of the different tissues is extracted by applying spatial filtering to the coefficients of SWT. A multidimensional feature vector is formed by combining SWT coefficients and their statistical features. This feature vector is used as input to the SOM. SOM is used to segment images in a competitive unsupervised approach and an LVQ system is used for fine-tuning. Results are evaluated using Tanimoto similarity index and are compared with manually segmented images. Quantitative comparisons of our system with the other methods on real brain MR images using Tanimoto similarity index demonstrate that our system shows better segmentation performance for the gray matter while it gives average results for white matter.
机译:这项研究提出了一种图像分割系统,该系统可以自动分割和标记T1加权脑磁共振(MR)图像。该方法基于自组织图的无监督学习算法(SOM)和有监督学习矢量量化(LVQ)方法的结合。固定小波变换(SWT)应用于图像,以获得用于区分不同组织的多分辨率信息。通过对SWT系数应用空间滤波来提取不同组织的统计信息。通过组合SWT系数及其统计特征来形成多维特征向量。该特征向量用作SOM的输入。 SOM用于以竞争性无监督方式对图像进行分割,而LVQ系统用于微调。使用Tanimoto相似性指数评估结果,并将其与手动分割的图像进行比较。使用Tanimoto相似性指数对我们的系统与其他方法在真实大脑MR图像上的定量比较表明,我们的系统对灰质显示出更好的分割性能,而对白质给出了平均结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号