首页> 外文期刊>Engineering Applications of Artificial Intelligence >Explicit output-feedback nonlinear predictive control based on black-box models
【24h】

Explicit output-feedback nonlinear predictive control based on black-box models

机译:基于黑盒模型的显式输出反馈非线性预测控制

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient online computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.
机译:非线性模型预测控制(NMPC)算法基于各种非线性模型。在文献中可以找到许多基于各种黑盒模型的输出反馈NMPC在线优化方法。但是,涉及在线优化的NMPC在计算上要求很高。另一方面,对NMPC问题的明确解决方案将允许有效的在线计算以及实现的可验证性。本文采用一种近似的多参数非线性规划方法来明确解决黑盒模型所描述的约束非线性系统的输出反馈NMPC问题。特别地,使用神经网络模型并考虑最佳调节问题。为了在有界干扰和/或模型误差的情况下实现无偏移的闭环响应,采用了双模式控制策略。该方法用于设计用于调节pH维持系统的显式NMPC。 NMPC控制器性能的验证基于仿真实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号