首页> 外文期刊>Engineering Applications of Artificial Intelligence >A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems
【24h】

A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems

机译:一种新的基于TLBO的多目标优化方法,用于配电系统中自动电压调节器的定位

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new multi-objective optimization algorithm based on modified teaching-learning-based optimization (MTLBO) algorithm in order to solve the optimal location of automatic voltage regulators (AVRs) in distribution systems at presence of distributed generators (DCs). The objective functions including energy generation costs, electrical energy losses and the voltage deviation are considered in this paper. In the proposed MTLBO algorithm, teacher and learner phases are modified. The considered objective functions are energy generation costs, electrical energy losses and the voltage deviations. The proposed algorithm uses an external repository to save founded Pareto optimal solutions during the search process. Since the objective functions are not the same, a fuzzy clustering method is used to control the size of the repository. The proposed technique allows the decision maker to select one of the Pareto optimal solutions (by compromising) for different applications. The performance of the suggested algorithm on a 70-bus distribution network in comparison with other evolutionary methods such as genetic algorithm (GA), particle swarm optimization (PSO) and TLBO is extraordinary.
机译:本文提出了一种基于改进的基于教学学习的优化(MTLBO)算法的新的多目标优化算法,以解决存在分布式发电机(DC)的配电系统中自动电压调节器(AVR)的最优位置。本文考虑了目标函数,包括发电成本,电能损耗和电压偏差。在提出的MTLBO算法中,修改了教师和学习者的阶段。所考虑的目标函数是能量产生成本,电能损耗和电压偏差。所提出的算法使用外部存储库在搜索过程中保存已建立的帕累托最优解。由于目标函数不相同,因此使用模糊聚类方法来控制存储库的大小。所提出的技术允许决策者为不同的应用选择帕累托最优解决方案之一(通过折衷)。与其他进化方法(例如遗传算法(GA),粒子群优化(PSO)和TLBO)相比,建议的算法在70总线配电网络上的性能非常出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号