首页> 外文期刊>Engineering Applications of Artificial Intelligence >Fault detection and diagnosis in synchronous motors using hidden Markov model-based semi-nonparametric approach
【24h】

Fault detection and diagnosis in synchronous motors using hidden Markov model-based semi-nonparametric approach

机译:基于隐马尔可夫模型的半非参数方法的同步电动机故障检测与诊断

获取原文
获取原文并翻译 | 示例

摘要

Early detection and diagnosis of faults in industrial machines would reduce the maintenance cost and also increase the overall equipment effectiveness by increasing the availability of the machinery systems. In this paper, a semi-nonparametric approach based on hidden Markov model is introduced for fault detection and diagnosis in synchronous motors. In this approach, after training the hidden Markov model classifiers (parametric stage), two matrices named probabilistic transition frequency profile and average probabilistic emission are computed based on the hidden Markov models for each signature (nonpara-metric stage) using probabilistic inference. These matrices are later used in forming a similarity scoring function, which is the basis of the classification in this approach. Moreover, a preprocessing method, named squeezing and stretching is proposed which rectifies the difficulty of dealing with various operating speeds in the classification process. Finally, the experimental results are provided and compared. Further investigations are carried out, providing sensitivity analysis on the length of signatures, the number of hidden state values, as well as statistical performance evaluation and comparison with conventional hidden Markov model-based fault diagnosis approach. Results indicate that implementation of the proposed preprocessing, which unifies the signatures from various operating speeds, increases the classification accuracy by nearly 21% and moreover utilization of the proposed semi-nonparametric approach improves the accuracy further by nearly 6%.
机译:对工业机械中的故障进行早期检测和诊断将降低维护成本,并通过增加机械系统的可用性来提高整体设备的效率。本文介绍了一种基于隐马尔可夫模型的半非参数方法,用于同步电动机的故障检测和诊断。在这种方法中,在训练了隐马尔可夫模型分类器(参数阶段)之后,基于每个概率(非参数阶段)的隐马尔可夫模型,使用概率推理,基于隐马尔可夫模型,计算了两个概率矩阵,分别是概率跃迁频率分布图和平均概率发射。这些矩阵随后用于形成相似性评分函数,这是此方法中分类的基础。此外,提出了一种称为压缩和拉伸的预处理方法,该方法纠正了分类过程中处理各种操作速度的困难。最后,提供了实验结果并进行了比较。进行了进一步的研究,提供了对签名长度,隐藏状态值数量的敏感性分析,以及统计性能评估和与基于常规隐马尔可夫模型的故障诊断方法的比较。结果表明,所提出的预处理的实现将各种操作速度下的签名统一起来,将分类准确率提高了近21%,此外,所提出的半非参数方法的利用率进一步提高了接近6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号