首页> 外文期刊>Engineering Applications of Artificial Intelligence >Tool wear state recognition based on linear chain conditional random field model
【24h】

Tool wear state recognition based on linear chain conditional random field model

机译:基于线性链条件随机场模型的刀具磨损状态识别

获取原文
获取原文并翻译 | 示例

摘要

Tool condition monitoring (TCM) system is paramount for guaranteeing the quality of workpiece and improving the efficiency of the machining process. To overcome the shortcomings of Hidden Markov Model (HMM) and improve the accuracy of tool wear recognition, a linear chain conditional random field (CRF) model is presented. As a global conditional probability model, the main characteristic of this method is that the estimation of the model parameters depends not only on the current feature vectors but also on the context information in the training data. Therefore, it can depict the interrelationship between the feature vectors and the tool wear states accurately. To test the effectiveness of the proposed method, acoustic emission data are collected under four kinds of tool wear state and seven statistical features are selected to realize the tool wear classification by using CRF and hidden Markov model (HMM) based pattern recognition method respectively. Moreover, k-fold cross validation method is utilized to estimate the generation error accurately. The analysis and comparison under different folds schemes show that the CRF model is more accurate for the classification of the tool wear state. Moreover, the stability and the training speed of the CRF classifier outperform the HMM model. This method casts some new lights on the tool wear monitoring especially in the real industrial environment.
机译:刀具状态监控(TCM)系统对于保证工件质量和提高加工效率至关重要。为了克服隐马尔可夫模型(HMM)的缺点,提高刀具磨损识别的准确性,提出了一种线性链条件随机场(CRF)模型。作为全局条件概率模型,此方法的主要特征是模型参数的估计不仅取决于当前的特征向量,还取决于训练数据中的上下文信息。因此,它可以准确地描述特征向量与刀具磨损状态之间的相互关系。为了验证该方法的有效性,分别在四种刀具磨损状态下收集声发射数据,并选择七个统计特征,分别使用基于CRF和基于隐马尔可夫模型(HMM)的模式识别方法实现刀具磨损分类。此外,利用k倍交叉验证方法来准确估计生成误差。在不同折痕方案下的分析和比较表明,CRF模型对于刀具磨损状态的分类更为准确。此外,CRF分类器的稳定性和训练速度优于HMM模型。这种方法给刀具磨损监测带来了新的亮点,尤其是在实际的工业环境中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号