首页> 中国专利> 基于条件随机场模型的刀具磨损状态监测方法

基于条件随机场模型的刀具磨损状态监测方法

摘要

本发明公开了一种基于条件随机场模型的刀具磨损状态监测方法,通过采集切削过程中的声发射信号,并对其进行预处理和相关的特征提取,将提取的特征向量作为条件随机场模型的训练样本和测试样本,利用得到的训练样本建立刀具磨损状态监测的条件随机场模型,将测试样本输入建立的模型,输出所对应的磨损状态,对刀具的不同磨损状态进行了准确地检测,达到仅分析切削过程产生的声发射信号就可以预测刀具磨损状态的目的。检测的结果表明,该方法能够准确的识别刀具不同磨损阶段的磨损状态,对刀具磨损的在线监测具有很大的现实意义。

著录项

  • 公开/公告号CN102689230A

    专利类型发明专利

  • 公开/公告日2012-09-26

    原文格式PDF

  • 申请/专利权人 天津大学;

    申请/专利号CN201210142987.1

  • 发明设计人 王国锋;郭志伟;冯晓亮;

    申请日2012-05-09

  • 分类号B23Q17/09(20060101);

  • 代理机构12201 天津市北洋有限责任专利代理事务所;

  • 代理人李丽萍

  • 地址 300072 天津市南开区卫津路92号

  • 入库时间 2023-12-18 06:33:08

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-04-09

    授权

    授权

  • 2012-11-21

    实质审查的生效 IPC(主分类):B23Q17/09 申请日:20120509

    实质审查的生效

  • 2012-09-26

    公开

    公开

说明书

技术领域

本发明涉及一种刀具磨损状态监测方法,尤其涉及一种基于条件随机场(CRF)模型的刀 具磨损状态监测方法。

背景技术

刀具在切削的过程中,由于刀具和工件长时间的接触磨损以及积屑瘤、操作不当等原 因,易造成刀具的磨损,使刀具的几何形状发生变化,降低了工件加工的精度,不仅浪费 时间,而且增大了加工的成本。随着制造业的发展,切削加工正面临着提高加工质量、缩 短加工时间、降低加工成本等方面的挑战,而切削过程中刀具的磨损会直接影响加工质量, 降低加工效率,甚至损伤加工工件和机床,如果靠停机检测,会大大降低生产效率,无法 及时改善加工质量,因此这就迫切要求对刀具磨损状态实行在线监测和评估,根据监测结 果进行适当的操作。一直以来,很多学者对刀具磨损状态监测进行了大量的研究,并且取 得了一些成果,但都存在一些不足之处。

发明内容

针对现有技术的一些不足之处,为了对加工过程中刀具的不同磨损状态做出准确的监 测,降低刀具磨损后未能及时换刀引起的损失,本发明提供了一种基于条件随机场(CRF) 模型的刀具磨损监测方法,通过建立刀具磨损状态与提取的声发射信号特征之间的CRF模 型,对刀具不同磨损阶段的磨损状态进行了准确的识别,从而达到通过产生的声发射信号 预测刀具的不同磨损状态的目的。

为了解决上述技术问题,本发明基于条件随机场模型的刀具磨损状态监测方法是在刀 具进行多次切削过程中,对刀具进行磨损监测,包括以下步骤:

步骤一、对采集到的切削过程的声发射信号进行预处理:首先,去掉刀具刚切入和切 出部分的声发射信号,截取切削平稳阶段的声发射信号,然后,对声发射信号进行滤波和 小波分解,选取60KHz到200KHz频段的信号进行特征提取;

步骤二、从声发射信号中提取特征向量,包括提取声发射信号的最大值、偏度、峭度、 均方根、熵、方差和峰峰值,从而得到条件随机场模型的训练样本和测试样本;

步骤三、分析声发射信号的特征与刀具磨损状态的关系,建立刀具磨损状态监测的条 件随机场模型:

首先,初始化条件随机场模型参数,该条件随机场模型使用线性链式结构,设置模型 参数,主要是特征权重参数λ的设置,将特征权重参数λ的初值为零,特征权重参数λ的 维数取决于训练样本个数和状态数;

然后,设置模型训练的收敛精度ε,将训练样本输入初始化后的条件随机场模型进行 迭代运算,采用拟牛顿算法计算参数,当梯度小于等于收敛精度ε时,停止迭代;

最终,采用最大似然估计求解法,确定训练后的条件随机场特征权重参数λ,从而建 立刀具磨损状态监测的条件随机场模型;

步骤四、将由步骤二得到的测试样本输入到由步骤三建立的刀具磨损状态监测的条件 随机场模型中进行概率计算,得到该测试样本对应的标记序列,从而进行刀具磨损状态的 识别,并由刀具磨损状态监测的条件随机场模型输出测试样本所对应的刀具磨损状态的类 型,刀具磨损状态的类型包括有:

1)新刀,磨损量为0;

2)初期磨损,磨损量为(0.05~0.1)mm;

3)正常磨损,磨损量为(0.1~0.5)mm;

4)剧烈磨损,磨损量大于0.5mm。

与现有技术相比,本发明的有益效果是:

本发明基于条件随机场(CRF)模型的刀具磨损监测方法是采用CRF建模,采用声发射 作为监测信号,具有信号获取容易,响应快和灵敏度高等特点,在刀具在线监测中具有很 大优势;CRF模型不需要对识别数据做独立性假设,而在应用HMM时,首先要假设识别数 据是相互独立的。在实际的切削过程中,通常提取的信号的特征向量不是相互独立的,而 是有一定的联系的,CRF模型是一种无向图结构模型,在给定观测序列的条件下,可以建 立一个观测序列和标记序列的联合概率模型,直接采用指数分布来估计随机变量序列的概 率分布,并且允许状态与观测数据之间存在非局部依赖关系。因此,本发明更适合应用于 实际情况。

附图说明

图1是本发明监测刀具磨损状态条件随机场模型的建模主流程图;

图2是本发明中基于条件随机场(CRF)建模的线性链式条件随机场模型;

图3是本发明中基于条件随机场(CRF)模型训练曲线;

图4-1至图4-4是刀具磨损照片,

其中:图4-1是0th/0mm,图4-2是16th/0.10mm,图4-3是34th/0.30mm,图4-4是 41th/0.55mm。

具体实施方式

下面结合具体实施方式对本发明作进一步详细地描述。

如图1所示,本发明基于条件随机场(CRF)模型的刀具磨损状态监测方法,通过采集 切削过程中的声发射信号,并对其进行预处理和相关的特征提取,将提取的特征向量作为 条件随机场模型的训练样本和测试样本,利用得到的训练样本建立刀具磨损状态监测的条 件随机场模型,将测试样本输入建立的模型,输出所对应的磨损状态,对刀具的不同磨损 状态进行了准确地检测,达到仅分析切削过程产生的声发射信号就可以预测刀具磨损状态 的目的。

本发明一种基于条件随机场模型的刀具磨损状态监测方法,在刀具进行多次切削过程 中,对刀具进行磨损监测,包括以下步骤:

步骤一、对采集到的切削过程的声发射信号进行预处理:首先,去掉刀具刚切入和切 出部分的声发射信号,截取切削平稳阶段的声发射信号,然后,对声发射信号进行滤波和 小波分解,选取60KHz到200KHz频段的信号进行特征提取;

步骤二、从声发射信号中提取特征向量,包括提取声发射信号的最大值、偏度、峭度、 均方根、熵、方差和峰峰值,从而得到条件随机场模型的训练样本和测试样本;

从目标信号中提取用于训练和测试的特征向量,如表1所示。

表1提取用于训练和测试的特征向量

声发射的最大值与刀具磨损的关系密切,当刀具磨损后,声发射信号的最大值会随着 刀具磨损量的增加而增加;偏度反映了信号偏离中心的程度,刀具磨损后,声发射信号的 偏度会相应发生变化;峭度值描述了信号的分布情况,刀具磨损后,声发射信号的分布会 复杂化和离散化;均方根反映了声发射信号所包含的能量,当刀具磨损后,声发射信号所 包含的能量会随着刀具磨损量的增加而增加;熵表示信号内部的不确定程度,刀具磨损量 不同,声发射信号的熵值会随着变化;方差描述了信号偏离其平均值的程度,刀具磨损量 不同时,声发射信号的方差也不同。

步骤三、分析声发射信号的特征与刀具磨损状态的关系,建立刀具磨损状态监测的条 件随机场模型:

在训练模型之前,首先要对CRF模型进行参数初始化设置,其中最主要的是对特征权 重参数λ的确定,为了保证测试结果的稳定性,本发明中对特征权重参数λ的初值设为零 (模型中还提供了其它随机设定的方法),其维数由训练样本个数和状态数决定。对参数进 行初始化设置之后便可以进行模型训练。

对给定的输入结点xi,CRF可以计算出指定输出结点yi的条件概率,i表示结点在序列 X={x1,x2,…,xt}和Y={y1,y2,…,yt}中的位置。

CRF模型是一种无向图结构模型,在无向图中,任何一个全连通(任意两个顶点间都 有边相连)的子图称为一个团(clique),不能被其它团所包含的称为最大团。在给定观测 序列的条件下,CRF模型可以建立一个观测序列和标记序列的联合概率模型。在建立CRF 模型时,最简单的也是使用最多的结构是线性链式结构。

线性链是一种典型的CRF模型,如图2所示,输入结点集合X={x1,x2,…,xt}表示可 被观测的输入序列,输出结点集合Y={y1,y2,…,yt}对应于可被模型预测的输出状态,它 们并不是由模型产生的,因此相互之间不存在依赖关系,也无需做独立性假设。条件随机 场(X,Y)就是一个以X为条件的无向图模型,Y倾向于满足最大全局条件概率,即:

Y*=argmaxYP(Y|X)---(1)

公式(1)中,P(Y|X)表示全局条件概率,argmax运算符是用来计算使表达式的值最大 的Y的。

对于输入数据序列X和标记序列Y,条件随机场的全局特征表示为:

F(y,x)=Σif(y,x,i)---(2)

公式(2)中,x和y分别为输入数据序列X和标记序列Y中的值,i遍历输入序列中的所 有位置,  f(y,x,i)表示在i位置时各个特征组成的特征向量。

依据随机场基本定理,如果图2中的标记序列Y={y1,y2,…,yt}是一个树形结构(线性 链是树形结构的特例),那么给定观察序列X={x1,x2,…,xt},标记序列Y的条件概率如下:

Pλ(Y|X)∝ exp[λ·F(Y,X)]        (3)

公式(3)中,Pλ(Y|X)表示在引入特征权重参数λ后的全局条件概率;λ为需要估算的 特征权重参数,可从训练样本数据中估计得到。大的、非负的λ参数值意味着优先选择相 应的特征事件,负值对应的特征事件不太可能发生。

在给定观察序列X的条件下,引入归一化因子Zλ(X),则标记序列Y的条件概率可以 得到:

Pλ(Y|X)=1Zλ(X)exp[λ·F(Y,X)]---(4)

公式(4)中,Zλ(X)是归一化因子,如公式(5):

Zλ(X)=Σyexp[λ·F(y,x)]---(5)

链式CRF的模型推理是指在给定一个观察序列X={x1,x2,…,xt}的条件下,找到一个对 应于X的最可能的标记序列Y={y1,y2,…,yt}。

用CRF建立Pλ(Y|X)的概率模型时,要寻求Pλ(Y|X)的最大化,满足此条件的标记y*即 为最佳标记,其中Zλ(X)与y是非相关的,因此y*可以综合公式(1)、(4)和(5)获得:

y*=argmaxyPλ(y|x)=argmaxy1Zλ(X)exp[λ·F(Y,X)]=argmaxy[λ·F(y,x)]---(6)

利用维特比(Viterbi)等动态规划算法,可以求出最佳标记y*

特征权重参数λ=(λ12...λt)的估计是CRF模型的一个重要工作,目前主要的参数估计 的方法有两种:最大似然估计和贝叶斯估计。一般用最大似然估计较为普遍,本发明采用 最大似然估计求解。

在给定完备的标记磨损训练集{xi,yi}i=1,2…t的条件下,特征权重参数λ可以通过最优化 训练集的条件对数似然(log-likelihood)求解出。

给定训练数据样本集为且样本相互独立。对数似然估计的任务是 从相互独立的训练数据中估计λi(i表示在λ序列中的位置),从而得到特征权重参数λ的 值。

条件概率Pλ(y|x)的似然函数为:

L(λ)=Σi=1`tlog[Pλ(yi|xi)]---(7)

公式(7)中,xi表示在输入数据序列X中i位置的值,yi表示在标记序列Y中i位置的 值。

L(λ)可以看成是关于λ的函数,最大似然估计的任务即从中求出满足:

λ^=argmaxλL(λ).---(8)

公式(8)中,为要求解的最终特征权重参数值。

由公式(4),可将公式(7)表示为:

L(λ)=Σilog[1Zλ(xi)exp(λ·F(yi,xi))]---(9)

=Σi[λ·F(yi,xi)-log(Zλ(xi))]

由公式(9)对参数λ进行求导,导数为零的点即为最值点,导数公式为:

L(λ)λ=Σi[F(yi,xi)-EPλ(Y|xi)F(Y,xi)]---(10)

公式(10)中,数学期望可以通过前向-后向算法(forward-backward  algorithm)的变种快速地计算出来。

步骤四、将由步骤二得到的测试样本输入到由步骤三建立的刀具磨损状态监测的条件 随机场模型中进行概率计算,模型利用Viterbi算法进行解码,输出测试样本所对应的刀具 磨损状态的类型。

CRF模型建立的是一个观测序列和标记序列之间的关系的模型,在本实验中也就是建 立了一个信号的特征和所对应的磨损状态之间关系的模型,将测试样本输入利用训练样本 建立的模型,进行解码、计算得出测试样本对应出现概率最大的磨损状态,就可以认为这 种磨损状态即是该测试样本对应的磨损状态。

刀具的磨损如图4-1、图4-2、图4-3和图4-4所示,定义四种磨损状态:初始时为 新刀,第16次测量时刀具磨损状态为初期磨损,34次测量时刀具磨损状态为正常磨损, 41次测量时刀具磨损状态为剧烈磨损。

将得到的四种磨损状态(即新刀、初期磨损、正常磨损、剧烈磨损四种磨损状态)的数 据,每种状态分别取100组样本,其中70组样本作为训练样本输入到初始化后的CRF模 型进行训练,剩余的30组作为测试样本,分别输入建立的CRF模型进行识别,用来检验 所建立的CRF模型的准确性。

训练过程中模型的收敛精度设为ε=0.0001,其中模型解码采用了维特比(Viterbi)算 法,推理方法用前向-后向算法(forward-backward algorithm),参数估计利用有限内存 拟牛顿方法(limited-memory(variable-storage)quasi-Newton method)实现。模型训练 过程中随着迭代次数的增加,最大对数似然估计值也在增大,直到达到设定的收敛精度ε, 即时停止迭代,然后得到模型的特征权重参数λ。本实验得到的CRF模型的训 练曲线如图3所示。从图3中可以看出迭代运算进行26次后达到了收敛精度,收敛速度 较快。

表2四种磨损状态测试样本的识别结果

    磨损状态   新刀   初期磨损   正常磨损 剧烈磨损 CRF识别率/%     100     96.67     100     100

从表2中可以看出,CRF模型对新刀、正常磨损和严重磨损三种磨损状态的识别率为 100%,对初级磨损的识别率也高达96.67%。

由以上几个步骤,通过提取刀具磨损的声发射信号,建立刀具磨损状态的CRF模型, 将测试样本输入所建立的模型实现了刀具磨损状态的识别,这样通过监测切削过程的信号 就可以判断刀具的磨损状态,实现了监测刀具磨损状态的目的。

尽管上面结合图对本发明进行了较为详细的阐述,但本发明并不局限于上述的具体实 施方式,上述的具体的实施方式仅仅是说明性的,而不是限制性的,应该理解的是,本领 域的技术人员在不背离本发明的精神的基础上,还可以对本发明进行各种修改和变形,这 些修改和变形应该在本发明的保护范围中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号