首页> 外文期刊>Engineering Applications of Artificial Intelligence >Optimal experiment design based on local model networks and multilayer perceptron networks
【24h】

Optimal experiment design based on local model networks and multilayer perceptron networks

机译:基于局部模型网络和多层感知器网络的最优实验设计

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the topic of model based design of experiments for the identification of nonlinear dynamic systems. Data driven modeling decisively depends on informative input and output data obtained from experiments. Design of experiments is targeted to generate informative data and to reduce the experimentation effort as much as possible. Furthermore, design of experiments has to comply with constraints on the system inputs and the system output, in order to prevent damage to the real system and to provide stable operational conditions during the experiment. For that purpose a model based approach is chosen for the optimization of excitation signals in this paper. Two different modeling architectures, namely multilayer perceptron networks and local model networks are chosen and the experiment design is based on the optimization of the Fisher information matrix of the associated model architecture. The paper presents and discusses feasible problem formulations and solution approaches for the constrained dynamic design of experiments. In this context the effects of the Fisher information matrix in the static and the dynamic configurations are discussed. The effectiveness of the proposed method is demonstrated on a complex nonlinear dynamic engine simulation model and an analysis as well as a comparison of the presented model architectures for model based experiment design is given.
机译:本文解决了基于模型的非线性动力学系统辨识实验设计的主题。数据驱动的建模决定性地取决于从实验中获得的信息输入和输出数据。实验设计旨在生成有用的数据,并尽可能减少实验工作量。此外,实验的设计必须遵守对系统输入和系统输出的约束,以防止损坏实际系统并在实验过程中提供稳定的操作条件。为此,本文选择了一种基于模型的方法来优化激励信号。选择了两种不同的建模架构,即多层感知器网络和局部模型网络,并且实验设计基于相关模型架构的Fisher信息矩阵的优化。本文介绍并讨论了约束动态设计实验的可行问题公式和解决方法。在这种情况下,讨论了Fisher信息矩阵在静态和动态配置中的作用。在复杂的非线性动态发动机仿真模型上证明了该方法的有效性,并对基于模型的实验设计进行了分析和比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号