首页> 外文期刊>Engineering Applications of Artificial Intelligence >Assessing fractal dimension methods as feature extractors for EMG signal classification
【24h】

Assessing fractal dimension methods as feature extractors for EMG signal classification

机译:评估分数维方法作为EMG信号分类的特征提取器

获取原文
获取原文并翻译 | 示例

摘要

The study of electromyographic (EMG) signals has gained increased attention in the last decades since the proper analysis and processing of these signals can be instrumental for the diagnosis of neuromuscular diseases and the adaptive control of prosthetic devices. As a consequence, various pattern recognition approaches, consisting of different modules for feature extraction and classification of EMG signals, have been proposed. In this paper, we conduct a systematic empirical study on the use of Fractal Dimension (FD) estimation methods as feature extractors from EMG signals. The usage of FD as feature extraction mechanism is justified by the fact that EMG signals usually show traces of self-similarity and by the ability of FD to characterize and measure the complexity inherent to different types of muscle contraction. In total, eight different methods for calculating the FD of an EMG waveform are considered here, and their performance as feature extractors is comparatively assessed taking into account nine well-known classifiers of different types and complexities. Results of experiments conducted on a dataset involving seven distinct types of limb motions are reported whereby we could observe that the normalized version of the Katz's estimation method and the Hurst exponent significantly outperform the others according to a class separability measure and five well-known accuracy measures calculated over the induced classifiers.
机译:在过去的几十年中,肌电信号(EMG)的研究得到了越来越多的关注,因为对这些信号的正确分析和处理可以为神经肌肉疾病的诊断和假体设备的自适应控制提供帮助。结果,已经提出了各种模式识别方法,其包括用于特征提取和EMG信号分类的不同模块。在本文中,我们对使用分形维数估计方法作为EMG信号的特征提取器进行了系统的实证研究。 FD被用作特征提取机制的事实是正确的,即EMG信号通常会显示出自相似的痕迹,以及FD能够表征和测量不同类型的肌肉收缩固有的复杂性。总体上,这里考虑了八种不同的方法来计算EMG波形的FD,并考虑了九种不同类型和复杂度的著名分类器,对它们作为特征提取器的性能进行了比较评估。报告了在涉及七种不同类型肢体运动的数据集上进行的实验结果,据此我们可以观察到,根据类可分离性度量和五种众所周知的准确性度量,Katz估计方法和Hurst指数的规范化版本明显优于其他形式通过归纳分类器进行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号