首页> 外文期刊>Engineering Applications of Artificial Intelligence >An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes
【24h】

An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes

机译:集成的SRM-多基因遗传规划方法来预测3-D土钉边坡的安全系数

获取原文
获取原文并翻译 | 示例

摘要

Soil nailing is one of the slope stabilisation techniques useful for the strengthening of existing slopes. It helps to reinforce the soil with passive inclusions that increase the overall shear strength of the soil slope and also restrains its displacements. The limit equilibrium method is usually employed to estimate factor of safety (FOS) of nailed slopes through either finite element or finite difference methods. Alternatively, soft computing methods such as multi-gene genetic programming (MGGP), support vector regression (SVR) and artificial neural network (ANN) can also be used to predict the FOS for different soil properties. Among these methods, MGGP possesses the ability to evolve the model structure and its coefficients automatically. Although widely used, the MGGP method has the limitation of producing models that perform poorly on testing data. Therefore, in this study, an integrated structural risk minimisation-multi-gene genetic programming (SRM-MGGP) method is proposed to formulate the mathematical relationship between FOS and the six input variables of cohesion, frictional angle, nail inclination angle, nail length, slope height and slope angle of 3-D nailed slope. The results indicate that the SRM-MGGP model outperforms the other three models (MGGP, SVR and ANN) and is able to generalise the FOS satisfactorily for any given input variables conditions. This would be useful for engineers in their design calculations of slopes with different soil, slope and nail conditions based on certain limitations such as ignorance of effect of pore water pressure or overburden pressure.
机译:土钉是用于加固现有边坡的边坡稳定技术之一。它有助于通过被动夹杂物来加固土壤,从而增加土壤边坡的整体抗剪强度并抑制其位移。极限平衡法通常用于通过有限元法或有限差分法估算钉固边坡的安全系数(FOS)。或者,也可以使用诸如多基因遗传规划(MGGP),支持向量回归(SVR)和人工神经网络(ANN)的软计算方法来预测不同土壤性质的FOS。在这些方法中,MGGP具有自动演化模型结构及其系数的能力。尽管已被广泛使用,但MGGP方法具有生成对测试数据表现不佳的模型的局限性。因此,在这项研究中,提出了一种集成的结构风险最小化-多基因遗传规划(SRM-MGGP)方法,以公式化FOS与内聚力,摩擦角,钉子倾斜角,钉子长度, 3-D钉坡的坡高和坡角。结果表明,SRM-MGGP模型优于其他三个模型(MGGP,SVR和ANN),并且对于任何给定的输入变量条件,都能令人满意地概括FOS。这对于工程师基于某些限制(例如对孔隙水压力或上覆压力的影响的无知)的不同土壤,斜坡和钉子条件的斜坡的设计计算很有用。

著录项

  • 来源
  • 作者单位

    School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore;

    Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India;

    School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore;

    Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-gene genetic programming; FOS prediction; SRM-MGGP; GPTIPS; LS-SVM;

    机译:多基因遗传编程;FOS预测;SRM-MGGP;GPTIPS;最小二乘支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号