首页> 外文期刊>Engineering Applications of Artificial Intelligence >Combining Singular Value Decomposition and a multi-classifier: A new approach to support coreference resolution
【24h】

Combining Singular Value Decomposition and a multi-classifier: A new approach to support coreference resolution

机译:结合奇异值分解和多分类器:支持共指解析的新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new machine learning approach is presented to deal with the coreference resolution task. This approach consists of a multi-classifier system that classifies mention-pairs in a reduced dimensional vector space. The vector representation for mention-pairs is generated using a rich set of linguistic features. The (Singular Value Decomposition) SVD technique is used to generate the reduced dimensional vector space. The approach is applied to the OntoNotes v4.0 Release Corpus for the column-format files used in CONLL-2011 coreference resolution shared task. The results obtained show that the reduced dimensional representation obtained by SVD is very adequate to appropriately classify mention-pair vectors. Moreover, it can be stated that the multi-classifier plays an important role in improving the results.
机译:本文提出了一种新的机器学习方法来处理共指解析任务。该方法由一个多分类器系统组成,该系统在降维向量空间中对提及对进行分类。使用丰富的语言功能集生成提及对的向量表示。 (奇异值分解)SVD技术用于生成降维向量空间。该方法适用于OntoNotes v4.0发行语料库,用于CONLL-2011共参考解析共享任务中使用的列格式文件。获得的结果表明,通过SVD获得的降维表示非常适合于适当地对提及对向量进行分类。此外,可以说,多分类器在改善结果中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号