首页> 外文期刊>Engineering Applications of Artificial Intelligence >Active learning for improving a soft subspace clustering algorithm
【24h】

Active learning for improving a soft subspace clustering algorithm

机译:主动学习以改善软子空间聚类算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new soft subspace clustering algorithm is proposed. It is an iterative algorithm based on the minimization of a new objective function. The classification approach is developed by acting at three essential points. The first one is related to an initialization step; we suggest to use a multi-class support vector machine (SVM) for improving the initial classification parameters. The second point is based on the new objective function. It is formed by a separation term and compactness ones. The density of clusters is introduced in the last term to yield different cluster shapes. The third and the most important point consists in an active learning with SVM incorporated in the classification process. It allows a good estimation of the centers and the membership degrees and a speed convergence of the proposed algorithm. The developed approach has been tested to classify different synthetic datasets and real images databases. Several indices of performance have been used to demonstrate the superiority of the proposed method. Experimental results have corroborated the effectiveness of the proposed method in terms of good quality and optimized runtime.
机译:本文提出了一种新的软子空间聚类算法。它是基于最小化新目标函数的迭代算法。分类方法是通过在三个要点上采取行动而制定的。第一个与初始化步骤有关;我们建议使用多类支持向量机(SVM)来改善初始分类参数。第二点是基于新的目标函数。它是由分离项和紧实度组成的。在最后一项中引入了簇的密度以产生不同的簇形状。第三点,也是最重要的一点是,在分类过程中结合使用SVM进行主动学习。它可以很好地估计中心和隶属度,并且可以加快算法的收敛速度。经过测试的开发方法可以对不同的合成数据集和真实图像数据库进行分类。几个性能指标已被用来证明所提出方法的优越性。实验结果证实了该方法在高质量和优化运行时间方面的有效性。

著录项

  • 来源
    《Engineering Applications of Artificial Intelligence》 |2015年第novaptaa期|196-208|共13页
  • 作者单位

    Laboratoire d'Automatique et de Robotique, Departement d'Electronique, Faculte des sciences de l'ingenieur, Universite des Freres Mentouri Constantine, Route d'Ain el bey, 25000 Constantine, Algeria;

    Laboratoire d'Automatique et de Robotique, Departement d'Electronique, Faculte des sciences de l'ingenieur, Universite des Freres Mentouri Constantine, Route d'Ain el bey, 25000 Constantine, Algeria;

    Departement des Sciences Exactes et Informatique, Ecole Normale Superieure de Constantine, Ali Mendjli, Constantine 3, Algeria;

    IBISC Laboratory, University Evry val D'Essonnes, 40 Pelvoux Street, 91080 EVRY Courcouronnes Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subspace clustering; Density; Active learning; SVM;

    机译:子空间聚类;密度;主动学习;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号