首页> 外文期刊>Engineering Applications of Artificial Intelligence >Contrastive divergence for memristor-based restricted Boltzmann machine
【24h】

Contrastive divergence for memristor-based restricted Boltzmann machine

机译:基于忆阻器的受限玻尔兹曼机的对比散度

获取原文
获取原文并翻译 | 示例

摘要

Restricted Boltzmann machines and deep belief networks have been shown to perform effectively in many applications such as supervised and unsupervised learning, dimensionality reduction and feature learning. Implementing networks, which use contrastive divergence as the learning algorithm on neuromorphic hardware, can be beneficial for real-time hardware interfacing, power efficient hardware and scalability. Neuromorphic hardware which uses memristors as synapses is one of the most promising areas to achieve the above-mentioned goals. This paper presents a restricted Boltzmann machine which uses a two memristor model to emulate synaptic weights and achieves learning using contrastive divergence.
机译:受限的玻尔兹曼机器和深度信任网络已被证明在许多应用中有效运行,例如有监督和无监督学习,降维和特征学习。实施将对比差异作为神经形态硬件上的学习算法的网络,对于实时硬件接口,高能效硬件和可伸缩性可能是有益的。使用忆阻器作为突触的神经形态硬件是实现上述目标的最有希望的领域之一。本文提出了一种受限的Boltzmann机器,该机器使用两个忆阻器模型来模拟突触权重并使用对比散度实现学习。

著录项

  • 来源
  • 作者单位

    School of Information and Communications, Gwangju Institute of Science and Technology (CIST), Cwangju, Republic of Korea;

    School of Information and Communications, Gwangju Institute of Science and Technology (CIST), Cwangju, Republic of Korea;

    Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada AB T6G 2G6,Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland,Department of Electrical and Computer Engineering Faculty of Engineering, King Abdulaziz University Jeddah, Saudi Arabia;

    School of Information and Communications, Gwangju Institute of Science and Technology (CIST), Cwangju, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Restricted Boltzmann machine; Neuromorphic; Memristor; Contrastive divergence;

    机译:受限的玻尔兹曼机神经形态忆阻器对比分歧;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号