首页> 外文期刊>Engineering Applications of Artificial Intelligence >A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems
【24h】

A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems

机译:基于离散教学的优化算法,用于现实的Flowshop调度问题

获取原文
获取原文并翻译 | 示例

摘要

In this study, we proposed a discrete teaching-leaming-based optimisation (DTLBO) for solving the flowshop rescheduling problem. Five types of disruption events, namely machine breakdown, new job arrival, cancellation of jobs, job processing variation and job release variation, are considered simultaneously. The proposed algorithm aims to minimise two objectives, i.e., the maximal completion time and the instability performance. Four discretisation operators are developed for the teaching phase and learning phase to enable the TLBO algorithm to solve rescheduling problems. In addition, a modified iterated greedy (IG)-based local search is embedded to enhance the searching ability of the proposed algorithm. Furthermore, four types of DTLBO algorithms are developed to make detailed comparisons with different parameters. Experimental comparisons on 90 realistic flowshop rescheduling instances with other efficient algorithms indicate that the proposed algorithm is competitive in terms of its searching quality, robustness, and efficiency.
机译:在这项研究中,我们提出了一种基于离散学习的优化算法(DTLBO),用于解决flowshop的重新安排问题。同时考虑了五种类型的中断事件,即机器故障,新作业到达,作业取消,作业处理变化和作业释放变化。提出的算法旨在最小化两个目标,即最大完成时间和不稳定性。在教学阶段和学习阶段开发了四个离散化运算符,以使TLBO算法能够解决重新计划问题。另外,嵌入了基于改进的迭代贪婪(IG)的本地搜索,以增强所提出算法的搜索能力。此外,开发了四种类型的DTLBO算法以对不同参数进行详细比较。通过对90个现实Flowshop重排实例与其他高效算法的实验比较表明,该算法在搜索质量,鲁棒性和效率方面都具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号