首页> 外文期刊>Engineering Applications of Artificial Intelligence >Fast algorithms for hiding sensitive high-utility itemsets in privacy-preserving utility mining
【24h】

Fast algorithms for hiding sensitive high-utility itemsets in privacy-preserving utility mining

机译:隐藏隐私的实用程序挖掘中隐藏敏感的高实用性项目集的快速算法

获取原文
获取原文并翻译 | 示例

摘要

High-Utility Itemset Mining (HUIM) is an extension of frequent itemset mining, which discovers itemsets yielding a high profit in transaction databases (HUIs). In recent years, a major issue that has arisen is that data publicly published or shared by organizations may lead to privacy threats since sensitive or confidential information may be uncovered by data mining techniques. To address this issue, techniques for privacy-preserving data mining (PPDM) have been proposed. Recently, privacy-preserving utility mining (PPUM) has become an important topic in PPDM. PPUM is the process of hiding sensitive HUIs (SHUIs) appearing in a database, such that the resulting sanitized database will not reveal these itemsets. In the past the HHUIF and MSICF algorithms were proposed to hide SHUIs, and are the state-of-the-art approaches for PPUM. In this paper, two novel algorithms, namely Maximum Sensitive Utility-MAximum item Utility (MSU-MAU) and Maximum Sensitive Utility-Minimum item Utility (MSU-MIU), are respectively proposed to minimize me side effects of the saniti-zation process for hiding SHUIs. The proposed algorithms are designed to efficiently delete SHUIs or decrease their utilities using the concepts of maximum and minimum utility. A projection mechanism is also adopted in the two designed algorithms to speed up the sanitization process. Besides, since the evaluation criteria proposed for PPDM are insufficient and inappropriate for evaluating the sanitization performed by PPUM algorithms, this paper introduces three similarity measures to respectively assess the database structure, database utility and item utility of a sanitized database. These criteria are proposed as a new evaluation standard for PPUM.
机译:高功能项集挖掘(HUIM)是频繁项集挖掘的扩展,它发现在交易数据库(HUI)中产生高利润的项集。近年来,出现的一个主要问题是组织公开发布或共享的数据可能会导致隐私威胁,因为数据挖掘技术可能会发现敏感或机密信息。为了解决这个问题,已经提出了用于隐私保护数据挖掘(PPDM)的技术。最近,隐私保护实用程序挖掘(PPUM)已成为PPDM中的重要主题。 PPUM是隐藏出现在数据库中的敏感HUI(SHUI)的过程,因此生成的经过清理的数据库将不会显示这些项目集。过去,HHUIF和MSICF算法被用来隐藏SHUI,并且是PPUM的最新方法。在本文中,分别提出了两种新颖的算法,分别是最大敏感效用-最小项效用(MSU-MAU)和最大敏感效用-最小项效用(MSU-MIU),以最大程度地减少卫生处理过程的副作用。隐藏SHUI。所提出的算法旨在使用最大和最小效用的概念有效删除SHUI或减少其效用。两种设计算法中还采用了一种投影机制,以加快消毒过程。此外,由于针对PPDM提出的评估标准不足以且不适合评估PPUM算法执行的卫生处理,因此本文引入了三种相似性措施来分别评估已消毒数据库的数据库结构,数据库实用性和项目实用性。这些标准被提议作为PPUM的新评估标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号