首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multi-shot human re-identification using a fast multi-scale video covariance descriptor
【24h】

Multi-shot human re-identification using a fast multi-scale video covariance descriptor

机译:使用快速多尺度视频协方差描述符进行多镜头人类重新识别

获取原文
获取原文并翻译 | 示例

摘要

Multi-shot person re-identification in non-overlapping camera networks has become an important research area. In order to tackle this problem, a robust and adaptive person modeling against occlusion and uncontrolled changes is required. In this paper, a new Multi-Scale Video Covariance (MS-VC) unsupervised approach was proposed to efficiently describe human in motion and requires no labeled training data. The MS-VC approach is based on the computing of the features extracted from a new structured representation called Video Tree Structure (VIDTREST) of any video sequence and can efficiently describe behavioral biometrics and appearance of each human by combining spatio-temporal information in a fixed-size vector. The VIDTREST model captures moving regions of interest. In addition, it decreases the color weight which can discard background noise and resolve clothing similarity cases in the appearance models and other changes. Furthermore, a fast algorithm was suggested to decompose each sequence under VIDTREST, extract its multi-scale features and compute its covariance matrices in one pass. The proposed method was evaluated with CAVIAR and PRID datasets. Our experimental results outperform the recognition rates of the existing unsupervised approaches in-the-state-of-the-art.
机译:非重叠摄像机网络中的多镜头人物重新识别已成为重要的研究领域。为了解决这个问题,需要针对遮挡和不受控制的变化的健壮且自适应的人员建模。在本文中,提出了一种新的多尺度视频协方差(MS-VC)无监督方法来有效地描述运动中的人,并且不需要标记的训练数据。 MS-VC方法是基于对从任何视频序列的称为视频树结构(VIDTREST)的新结构化表示中提取的特征进行计算的,并且可以通过将固定时空信息组合在一起来有效描述每个人的行为生物特征和外观大小的向量。 VIDTREST模型捕获感兴趣的运动区域。此外,它减少了颜色权重,可以消除背景噪音并解决外观模型和其他更改中的衣服相似情况。此外,提出了一种快速算法,可在VIDTREST下分解每个序列,提取其多尺度特征并一次计算其协方差矩阵。所提出的方法与CAVIAR和PRID数据集进行了评估。我们的实验结果优于最新的现有无监督方法的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号